SYNOPSYS

DesignWare Cores Hi-Speed USB On-The-Go
Controller Subsystem Linux Driver Software

User Guide

4334-0 DWC USB 2.0 HSOTG Linux Driver

Version 2.90a
April 2009

[| Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Copyright Notice and Proprietary Information

Copyright © 2009 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary information
that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and may be used or
copied only in accordance with the terms of the license agreement. No part of the software and documentation may be reproduced,
transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without prior written
permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement

All technical data contained in this publication is subject to the export control laws of the United States of America. Disclosure to nationals
of other countries contrary to United States law is prohibited. It is the reader’s responsibility to determine the applicable regulations and
to comply with them.

Disclaimer

SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Registered Trademarks (®)

Synopsys, AMPS, Cadabra, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, iN-
Phase, in-Sync, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PrimeTime, SiVL, SNUG,
SolvNet, System Compiler, TetraMAX, VCS, and Vera are registered trademarks of Synopsys, Inc.

Trademarks (™)

Active Parasitics, AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BOA, BRT, ChipPlanner, Circuit
Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, DC
Expert, DC Professional, DC Ultra, Design Advisor, Design Analyzer, Design Vision, DesignerHDL, DesignTime, Direct RTL, Direct
Silicon Access, Discovery, Dynamic-Macromodeling, Dynamic Model Switcher, EDAnavigator, Encore, Encore PQ, Evaccess,
ExpressModel, Formal Model Checker, FoundryModel, Frame Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules,
Hercules-Il, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSIMP'“S, HSPICE-Link, iN-Tandem, Integrator,
Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library
Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture, Milkyway, ModelSource, Module Compiler,
Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Power
Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Raphael, Raphael-NES, Saturn, ScanBand, Schematic Compiler,
Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense,
Softwire, Source-Level Design, Star-RCXT, Star-SimXT, Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute,
Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Verification Portal, VFormal, VHDL Compiler, VHDL
System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (sV)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.

ARM and AMBA are registered trademarks of ARM Limited.

Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
PCI Express is a trademark of PCI-SIG.

All other product or company names may be trademarks of their respective owners.

Synopsys, Inc.
700 E. Middlefield Road
Mountain View, CA 94043

WWW.SyNnopsys.com

Synopsys, Inc. April 2009

www.synopsys.com

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

IMPORTANT:
Synopsys DWC HS OTG Linux Software Driver and documentation (hereinafter, “Software”) is an UNSUPPORTED proprietary work of
Synopsys, Inc. unless otherwise expressly agreed to in writing between Synopsys and you.

The Software IS NOT an item of Licensed Software or Licensed Product under any End User Software License Agreement or Agreement
for Licensed Product with Synopsys or any supplement thereto. You are permitted to use and redistribute this Software in source and
binary forms, with or without modification, provided that redistributions of source code must retain this notice. You may not view, use,
disclose, copy or distribute this file or any information contained herein except pursuant to this license grant from Synopsys. If you do not
agree with this notice, including the disclaimer below, then you are not authorized to use the Software.

THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN “AS IS” BASIS AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

April 2009 Synopsys, Inc.

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide [|

April 2009 Synopsys, Inc.

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Contents

Revision History o 9
Preface e 11
OV OV OW . ottt e e e 11
User Guide Organization i 11
Reference Documentationttt 11
Customer SUPPOTt 12
Chapter 1
Product OVerVIOW 13
1.1 Product OVerVIEWot e e e e e 13
1.2 Software Architecture 13
1.2.1 DWC_OTG Driver Architecture e 15
1.3 Driver Software COMPONENtSttt ettt et e 15
1.3.1 Environment Dependencies i 16
1A Deliverables 16
14T Driver SOftWareo 16
142 LInux Patch 17
1.4.3 Software Documentationt 17
1.4.4Demo SOftWaATe . ..ottt 17
TABL BINATIES . .ttt 17
1.4.6 Portability LIbraryt 18
Chapter 2
Environment-Specific Features 19
21 Linux Architecture 19
22 Linux Driver Module 20
221 Data Structures 20
2.2.2 Initialization and Cleanup Functions i 22
223 Module Parameters 23
224 sysfs Attributes 26
Chapter 3
Core Interface Layer 29
3.1 Core Interface Layer Overview i i 29
3.2 Data StrUCtUIESo 29
3.2.1 Control and Status Register Structures i 29
3.2.2 OTG Device Interface Structurettt e 34
3.2.3 OTG Host Interface Structure e 35
3.2.4 OTG Core Interface Structure i e 36
325 Endpoint Structure o 38

February 2009 Synopsys, Inc.

[Contents Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.2.6 Host Channel Structure i 41
3.2.7 DMA Descriptor Structure 44
3.3 Core Interface Layer Initialization 47
3.3.1 The dwc_otg_cil_init Function 47
3.3.2 The dwc_otg_core_init Function 47
3.4 Device Operationst 50
3.4.1 Global Device Operations it 50
3.4.2 Endpoint Operationsttt 52
B35 Host Operationso e 56
3.5.1 Global Host Operationst 56
3.5.2 Host Channel Operationst e 56
3.6 Common Operations 58
3.6.1 The dwc_otg_mode Function 58
3.6.2 The dwc_otg_read_packet Function i 58
3.6.3 The dwc_otg_dump_global_registers Function 59
3.6.4 The dwc_otg_enable_common_interrupts Function 59
3.6.5 The dwc_otg_enable_device_interrupts Function 59
3.6.6 The dwc_otg_enable_global_interrupts Function 59
3.6.7 The dwc_otg_disable_global_interrupts Function 59
3.6.8 The dwc_otg_disable_host_interrupts Function 59
3.7 Register ACCESS 59
3.7.1 The dwc_otg_read_core_intr Function 59
3.7.2 The dwc_otg_read_otg intr Function 60
3.7.3 The dwc_otg_read_dev_all_in_ep_intr Function 60
3.7.4 The dwc_otg_read_dev_all_out_ep_intr Function............ 60
3.7.5 The dwc_otg _read_dev_in_ep_intr Function 60
3.7.6 The dwc_otg_read_dev_out_ep_intr Function 60
3.7.7 The dwc_otg_read_host_all_channels_intr Function 60
3.7.8 The dwc_otg_read_host_channel_intr Function 60
3.8 Common Interrupt Service Routine 61
3.8.1 Mode Mismatch Interrupt 61
3820TG Interrupto 61
3.8.3 USB Suspend INterrupt oot 61
3.8.4 Connector ID Status Change Interrupt 61
3.8.5 New Session Detected Interrupto 61
3.8.6 Disconnect Detected Interrupt 61
3.8.7 Remote Wakeup Detected Interrupt i 62
3.8.8 LPM Transaction Received Interrupt 62
Chapter 4
Peripheral Controller Driver 63
4.1 Peripheral Controller Driver Overview i, 63
4.2 Function Driver Interface 63
421 Linux Gadget API 63
A3PCD Core APL ..o 69
4.3.1 The dwc_otg_pcd_init Function 70
4.3.2 The dwc_otg_pcd_remove Function i 70
4.3.3 The dwc_otg_pcd_start Function 70
4.3.4 The dwc_otg_pcd_ep_enable Function i 70
4.3.5 The dwc_otg_pcd_ep_disable Function.......... i 70
- Synopsys, Inc. February 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Contents

4.3.6 The dwc_otg_pcd_ep_queue Function i 70
4.3.7 The dwc_otg_pcd_ep_dequeue Function i, 70
4.3.8 The dwc_otg_pcd_ep_halt Function 70
4.3.9 The dwc_otg_pcd_handle_intr Function 71
4.3.10 The dwc_otg_pcd_get_frame_number Function 71
4.3.11 The dwc_otg_pcd_iso_ep_start Function i i, 71
4312 dwc_otg_pcd_iS0_ep_StopPot 71
4.3.13 The dwc_otg_pcd_get_iso_packet_params Function 71
4.3.14 The dwc_otg_pcd_get_iso_packet_count Function 71
4.3.15 The dwc_otg_pcd_wakeup Function 71
4.3.16 The dwc_otg_pcd_is_lpm_enabled Function 71
4.3.17 The dwc_otg_pcd_get_rmwkup_enable Function 72
4.3.18 The dwc_otg_pcd_initiate_srp Function i i 72
4.3.19 The dwc_otg_pcd_remote_wakeup Function 72
4.3.20 The dwc_otg_pcd_is_dualspeed Function 72
4.3.21 The dwc_otg_pcd_is_otg Function 72
4.3.22 hnp_param functionsuiiit it 72

4.4 Standard USB Command Processingttt 72
4.5 Device Interrupt Service Routine 73
4.5.1 Start of Frame Interrupt (SOF) 73
4.5.2 RxFIFO Non-Empty (RXFLv]) Interrupt 73
4.5.3 Non-Periodic TxFIFO Empty Interrupt i 73
4.5.4 Early Suspend Interrupt 74
455 USB Reset Interrupt 74
4.5.6 Enumeration Done Interrupt 75
4.5.7 Isochronous OUT Packet Dropped Interrupt i i, 75
4.5.8 End of Periodic Frame Interrupt 75
459 IN Token Received Interrupto 75
4.5.10 Endpoint Mismatch Interrupt 76
4511 IN Endpoint Interrupt o 76
4.5.12 OUT Endpoint Interrupt e e 76
4.5.13 Incomplete Isochronous IN Transfer Interrupt 77
4.5.14 Incomplete Isochronous OUT Transfer Interrupt 77

Chapter 5

Host Controller Driver e 79
5.1 Host Controller Driver Overview i 79
52 USB Driver Interface 79
521 Linuxhc_driver APL 79
53HCD Core APL. o 87
53.1 HCD Core APLfuNnCtONSttt e e 87

5.4 Select and Queue Transactionsttt 90
5.4.1 Select Transactions i 90
542 Queue TransactiOnSttt 91

5.5 Host Interrupt Service Routine 92
551 SOF Interrupto 92
5.5.2 RXFIFO Non-Empty (RXFLv]) Interrupt 92
5.5.3 Non-Periodic TxFIFO Empty Interrupt i 93
5.5.4 Periodic TxFIFO Empty Interrupt 93
555 Port Interrupt 93

February 2009 Synopsys, Inc.

[Contents Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.5.6 Host Channels Interrupt e 94
Appendix A
Performance ANalysis 101
Al Testing Environment 101
A.2 Test Results for HS OTG Linux Driver Software 102
Appendix B
ROM SIzing o 105
Bl OVerview 105
B.2 Estimated ROM Sizes o 105

Synopsys, Inc. February 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Revision History

Date

Version

Description

April 2009
February 2009

November 2008

October 2008

June 2008

May 2008

February 2007

2.90a
2.81a

2.80

2.72a

2.71a

2.70a

2.60a

Added support for Scatter/Gather Descriptor DMA in Host mode.

Added support for:
¢ Two-threshold enhancement
e PCI

e Added support for LPM enhancement
e Changed driver architecture to be easily ported to other OS

Added support for:

* |sochronous transfers for Slave and Buffer DMA modes
* Periodic Transfer Interrupt HW enhancement

e Multi Processor Interrupt HW enhancement

e Added support for NAK/NYET enhancement for Bulk and Control OUT transfers in
DMA mode

e Changed ARM integrator to IPMate throughout.

Added support for Scatter/Gather Descriptor DMA mode in Device mode, and
Isochronous transfers in Device mode with enabled Scatter/Gather Descriptor DMA
mode.

Added

e “DMA Descriptor Structure” on page 44

Updated

¢ Linux kernel support to 2.6.20.1 throughout.

* Descriptor DMA in “Device Initialization” on page 49

e Descriptor DMA in “The dwc_otg_ep0_start_transfer Function” on page 52

* Descriptor DMA in “The dwc_otg_ep0_continue_transfer Function” on page 53
* Descriptor DMA in “The dwc_otg_ep_activate Function” on page 53

Added thresholding support, including parameters:
e thr_ctl[2:0]

e tx_thr_len, rx_thr_len.

Updated tables B-1 and B-2.

April 2009

Synopsys, Inc.

[Revision History

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Date Version

Description

August 2006 2.50a

September 2005 2.20a

July 2005 2.10a

September 2005 2.10a

Added dedicated transmit FIFO support for non-periodic endpoints, including
parameters:

e en_multiple_tx_fifo
* dev_tx_fifo_size_n, (n=1to 15)

Linux kernel release 2.6.12.2 replaces release 2.6.9 as the reference operating
environment.

All transfer types are now supported in Host and Device modes, except split isochronous
transfers. Support for the following transfer types was added in the 2.10a release from
the 2.05a (non-product) release:

* Host and device mode isochronous transfers
e Device mode interrupt transfers
» Split transfers for all transfer types except isochronous

¢ DMA mode support for all transfer types (only Slave mode was available in previous
releases)

Added legal information on page 3.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Preface

Overview

This user guide defines the functionality of the Linux driver software for the Synopsys DesignWare USB 2.0
Hi-Speed On-The-Go (OTG) Controller Subsystem (DWC_otg), release 2.90a. It specifies what the software
does, not how it accomplishes its tasks. You can use this driver software as-is, or as a reference for
developing drivers for other operating environments.

Hi-Speed USB OTG Controller Subsystem Linux Driver Software corresponds to 4334-0 DWC USB 2.0
HSOTG Linux Driver in the SolvNet database.

The terms “DWC_otg driver” and “driver software” both refer to the Hi-Speed USB OTG Controller
Subsystem Linux Driver Software.

User Guide Organization
The chapters and appendixes of this user guide are organized as follows:

Chapter 1, “Product Overview,” describes the software architecture, driver software components, and
product deliverables.

Chapter 2, “Environment-Specific Features,” defines the driver software implementation and functionality
for the Linux environment.

Chapter 3, “Core Interface Layer ,” describes the Core Interface Layer (CIL) that provides basic services for
accessing and managing the DWC_otg hardware.

Chapter 4, “Peripheral Controller Driver,” describes the Peripheral Controller Driver (PCD) that translates
requests from the Function Driver into appropriate actions on the DWC_otg controller.

Chapter 5, “Host Controller Driver,” describes the Host Controller Driver (HCD) that translates requests
from the USB Driver into appropriate actions on the DWC_otg controller.

Appendix A, “Performance Analysis,” gives an analysis of the DWC_otg core’s load on the CPU for a basic
transfer.

Appendix B, “ROM Sizing,” gives estimates of how much ROM is needed for the DWC_otg driver and
other modules for different types of applications.

Reference Documentation
The following standards are related to the Linux Driver Software product:
< Universal Serial Bus Specification, Revision 2.0, USB Implementers Forum, April 27, 2000

% On-The-Go Supplement to the USB 2.0 Specification, Revision 1.0a, USB Implementers Forum, June 24,
2003

April 2009 Synopsys, Inc. -

http://www.usb.org/developers/docs
http://www.usb.org/developers/onthego
http://www.usb.org/developers/docs
http://www.usb.org/developers/onthego

[Preface

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

% On-The-Go Compliance Plan for the USB 2.0 Specification, Revision 1.0, USB Implementers Forum,
August 12, 2003

% Full and Low Speed Electrical and Interoperability Compliance Test Procedure, Revision 1.3, USB
Implementers Forum, February 2004

% DesignWare Cores USB 2.0 Hi-Speed On-The-Go (OTG) Databook, Version 2.20, Synopsys, Inc., June,
2005

Customer Support

To obtain support for your product, choose one of the following:

< Enter a call through SolvNet.

4+ Go to https:/ /solvnet.synopsys.com/ManageCase?ccf=1
and provide the requested information, including;:

o

<>
<>
<>
<>

Product: DesignWare Cores

Sub Product: USB 2.0 OTG

Version: 2.90a

Subject: HS OTG Linux Driver Software

% Send an e-mail message to support_center@synopsys.com.

4+ Include the Product name, Sub Product name, and Version (product release number) in your
e-mail so it can be routed correctly.

4+ Provide the following additional information, if applicable:

<>

<>

<>

<>

For environment setup problems, run the debug_info command in the coreConsultant GUI
and include the text file generated.

For configuration failures, include the error messages that appear in the coreConsultant GUI
console pane.

For simulation failures, include a text file with your specific configuration. Generate this text
file using the coreConsultant GUIs write_batch_script command. Also include the log file
from the <workspace>/simulation/ directory, the log file for the specific test, and a
VPD/VCD waveform dump file.

For synthesis failures, include the log file from the <workspace>/syn/ directory.

% Telephone your local support center.

United States:

Call 1-800-245-8005 from 7 AM to 5:30 PM Pacific time, Monday through Friday.
Canada:

Call 1-650-584-4200 from 7 AM to 5:30 PM Pacific time, Monday through Friday.

All other countries:

<+

http:/ /www.synopsys.com/support/support_ctr

Synopsys, Inc. April 2009

https://solvnet.synopsys.com/ManageCase?ccf=1
mailto:support_center@synopsys.com
http://www.synopsys.com/support/support_ctr
http://www.usb.org/developers/onthego/otgc1_0.pdf
http://www.synopsys.com/dw/ipdir.php?ds=dwc_usb_2_0_hs_otg
http://www.usb.org/developers/docs/USB-IFTestProc1_3.pdf
http://www.usb.org/developers/onthego/otgc1_0.pdf
http://www.usb.org/developers/docs/USB-IFTestProc1_3.pdf

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

1

Product Overview

1.1 Product Overview

The Synopsys DWC_otg core is a USB On-The-Go (OTG) controller subsystem that is compliant with the
On-the-Go Supplement for USB 2.0, Revision 1.0a. This controller is not EHCI- or OHCI-compliant. To reduce
gate count, some features that would be implemented in hardware in an EHCI/OHCI controller are instead
implemented in software.

The Linux driver software described in this user guide is for DWC_otg release 2.90a.

1.2 Software Architecture

Figure 1-1 shows the software architecture for the DWC_otg controller. There are two stacks in the software
architecture — the Host Stack and the Peripheral Stack. Brief descriptions of each of these stacks are given
below to set the context for the driver software. Since the DWC_otg controller can act as either a host (in
Host mode) or a peripheral (in Device mode), portions of both of these stacks are implemented in the

DWC _otg controller driver software.

The Host Stack is used to request transfers to or from USB devices when the DWC_otg controller is acting as
host. The top-level component in this stack is a Host Application that acts as a producer or consumer of
data. The Class Drivers translate application requests into a protocol that is specific to a certain type (or
class) of devices. Class Drivers use I/O Request Packets (IRPs) to transfer data to or from USB devices. The
USB Driver (USBD) provides services to allow multiple Class Drivers to configure, control, and exchange
data with their associated devices. The Hub Driver is also involved in the configuration process. The USBD
handles all communication with the Host Controller Driver (HCD), which must interact with the host
controller’s hardware architecture. The HCD interacts with the host controller to execute USB transfers
requested by the USBD.

The Peripheral Stack responds to requests received by a USB device when the OTG component is acting in
the role of a peripheral. The Peripheral Function is the sink or source of data requested by the host. The
Function Driver handles some USB requests directly. It also provides endpoint read /write data interfaces
and notification services to the Peripheral Function. The Peripheral Controller Driver (PCD) interacts with
the hardware architecture of the peripheral controller. The PCD interacts with the peripheral controller to
transfer data via the USB and notifies the Function Driver of USB requests.

April 2009 Synopsys, Inc. n

[Product Overview Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Figure 1-1 DWC_otg Software Architecture

Customer Host
Software Application
Class Drivers j‘
+ Mass Storage \
¢ Printer \
Standard OS + Audio) \ Peripheral
Component + Others... Hub Driver ‘ Function
\
| Function
USB Driver (USBD) \)
‘ Driver
- e . __:. __——mmmm -
Host Controller Driver (HCD) Peripheral Controller Driver (PCD)
Synopsys
Software ~ Controller Interface Layer (CIL)
. Inltla_tllzatlon + OTG Controfl
¢ Register Access + Diagnostic Interface
+ Data FIFO Access 9
DesignWare USB 2.0 OTG Controller
_________________________ gl
Synopsys :
Hardware Host Controller ! Device Controller
|
|

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Product Overview i

1.2.1 DWC_OTG Driver Architecture
To support portability, the OTG driver has the architecture depicted in Figure 1-2.

Figure 1-2 Driver Architecture

Portability Library
Interface

4

HCD API PCD API

HCD Core v v PCD Core
Core API

Core Interface Layer

Portable Blocks

1.3 Driver Software Components

There are three main driver software components: the Host Controller Driver (which includes the HCD core
and HCD OS wrapper), the Peripheral Controller Driver (which includes the PCD core and PCD OS
wrapper), and the Core Interface Layer (CIL). Basic HCD and PCD functionality is described in Section 1.2,
“Software Architecture.” Further elaboration of these and a description of the CIL are given below.

The HCD can be viewed as a hardware abstraction layer. In other words, the USBD cannot detect or
respond to the underlying hardware of the host controller. It merely transfers data and transmits commands
via a software interface with the HCD. Changes made to the host controller do not require changes to this
interface (although they do necessitate changes to the internal operation of the HCD).

Similarly, the PCD can be viewed as a hardware abstraction layer. Changes to the peripheral controller
hardware require internal changes in the PCD, but do not require changes to the interface between the PCD
and the Function Driver.

The Core Interface Layer provides basic services for accessing and managing the DWC_otg hardware. These
services are used by both the HCD and the PCD. Services include initialization, register access, data FIFO
access, and OTG control. In addition, the CIL provides a basic diagnostic interface that can be used to read
and write controller registers.

April 2009 Synopsys, Inc. .

[Product Overview Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Separating the Host Stack and Peripheral Stack components allows instantiating only those components
required to support the DWC_otg configuration. For example, when you design a product that always
operates in Device mode, only the PCD and CIL are required, and the HCD is not instantiated.

1.3.1 Environment Dependencies

All driver components are developed for a Linux operating system using kernel version 2.6.20.1 on an
IPMate platform.

The Host Controller Driver (HCD) OS wrapper and Peripheral Controller Driver (PCD) OS wrapper are
currently written only for Linux. These components must be modified for other operating environments.

As noted above, changes to the underlying hardware require changes to the internal operation of the driver
components. HCD and PCD cores provide their APIs, which are not changed due to hardware changes. All
components (HCD core, PCD core, and CIL) are aware of the internal architecture of the controller, register
set layout and contents; each of these components may need to be changed to adapt to controller changes.
However, for a given operating system (such as Linux), the layers above the HCD and PCD cores do not
require any changes. Because these layers use the same API to communicate with the HCD and PCD cores,
these cores are considered hardware abstraction layers.

14 Deliverables

This section describes the driver components, documentation, and demo software included with the Hi-
Speed USB OTG Controller Subsystem Linux Driver Software.

1.4.1 Driver Software

The following components are packaged and released for the DWC_otg controller:
< Host Controller Driver
% Peripheral Controller Driver
% Core Interface Layer

A single module contains all of these components.

These components provide the following support:
% Support for control, bulk, interrupt, and isochronous transfers in both Host and Device modes
% Slave (PIO) mode and integrated DMA mode data FIFO access
< Split transfers (not supported by the DWC_otg controller when Descriptor DMA is enabled)
% USB Suspend and Resume
< On-the-Go Host Negotiation Protocol (HNP) and Session Request Protocol (SRP)

These components are installed in Linux as a single loadable module.

@ Not When changes are required to Linux 2.6.20.1 in order to support our configuration of the IPMate
ote platform, a Linux patch will be included in the software deliverables.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Product Overview i

1.4.2

Linux Patch

If there are any changes to the Linux 2.6.20.1 kernel that affect support for our IPMate platform
configuration, we will include a Linux patch in the software deliverables. Any such patch will be packaged
separately from the driver software components, because it is licensed under the GPL (General Public
License).

1.4.3

Software Documentation

Source documentation in HTML format will be delivered for the driver components. This includes
documentation of the API for each of the driver components.

Instructions for acquiring and installing a Linux kernel of version 2.6.20.1 and applying required patches
are included in the release. Standard Linux components are required to run the demo software. These
components include:

2
0’0

2
0’0

2
0’0

2
0’0

1.4.4

Mass storage class driver

Printer class driver

USB Core

4+ Includes USB driver functionality

4+ Includes Hub Driver, which provides hub enumeration and support

File-Backed Storage Gadget Driver (This is a function driver that acts as a mass storage device and
stores/retrieves data from the file system.)

Demo Software

Demo software is delivered with the DWC_otg controller. This software consists of an application that
demonstrates the following features:

2
0’0

<

*

<

0,
0‘0

0,
0‘0

1.4.5

Mass storage transfers in Host mode when DWC_otg is connected to a Mass Storage FS/HS digital
camera, an FS/HS memory key, or an FS/HS hard disk.

Printing images to an FS USB printer (HP Photosmart 245 or 375) after the images are transferred
from the digital camera.

Switching from Host to Peripheral mode (and vice-versa) when the A and B ends of the USB cable
are swapped.

Mass storage transfers (FS and HS) in Device mode when DWC_otg is connected as a peripheral to a
host system.

Support for USB Certification testing, including FS-OPT, HS Device, and FS Device testing.

Binaries

Binaries targeted to the IPMate platform are delivered for the following items:

0,
0‘0

0,
0‘0

0,
0‘0

Linux 2.6.20.1 ARM kernel images for the IPMate

cramfs image containing the OTG Demo, the OTG Controller driver module, and class drivers
required to run the OTG Demo for the IPMate

Vivi image for IPMate

April 2009

Synopsys, Inc.

[Product Overview Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

1.4.6 Portability Library

This library provides an OS-independent interface for use by the portable parts of the driver. The
implementation of the portability library is OS-dependent.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

2

Environment-Specific Features

2.1 Linux Architecture

The Linux architecture, shown in Figure 2-1, is similar to the generic DWC_otg software architecture, shown
in Figure 1-1 on page 14.

Figure 2-1 Linux DWC_otg Software Architecture

Customer Host
Software Application
Class Drivers }
* Mass Storage \
¢ Printer \
Standard ¢ Audio . \ Gadget
Linux + Others... Hub Driver \ Application
Component |
USB Core } Gadget Driver
(usb & hcd framework) ‘ (Example: mass storage gadget)
e C——————————————————————— | I =— _ _
Host Controller Driver (HCD) Peripheral Controller Driver (PCD)
(Implements hc_driver interface) (Implements gadget interface)
Synopsys
Software ~ Controller Interface Layer (CIL)
. Inltla_\llzatlon + OTG Control
¢ Register Access + Diagnostic Interface
+ Data FIFO Access 9
DesignWare USB 2.0 OTG Controller
_________________________ g gy
Synopsys :
Hardware Host Controller ! Device Controller
|
|

The USB core component in Linux includes USB driver functionality, plus a framework to support Host
Controller Drivers. The HCD framework allows different HCDs to share code. This makes it easier to write
new HCDs and reduces the number of bugs. The HCD only implements functionality that requires
interaction with the underlying hardware. This is accomplished by defining the hc_driver interface. This
interface consists of the functions and data that must be supplied by an HCD in order to plug into the Linux

April 2009 Synopsys, Inc.

[Environment-Specific Features Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

HCD framework. The Linux version of the DWC_otg HCD will implement the hc_driver interface. See
“Linux hc_driver API” on page 79 for more information.

In Linux, peripheral devices are called gadgets. Thus, the Peripheral Function is called a Gadget Application
and the Function Driver is called a Gadget Driver. Linux defines a Gadget API, which is the interface
between the Gadget Driver and the Peripheral Controller Driver. Similar to the hc_driver interface, the
Gadget API isolates hardware-specific behavior to the Peripheral Controller Driver. The Linux version of
the DWC_otg PCD implements the Gadget API. See “Linux Gadget API” on page 63 for more information.

The API of the Core Interface Layer is independent of the operating system. Services provided by this
component are the same regardless of the operating system.

2.2 Linux Driver Module

All driver components are contained in a single driver module. The module wrapper code, including
module initialization and cleanup functions, is Linux-dependent. This section describes the Linux module
functionality.

The dwc_otg module provides the initialization and cleanup entry points for the DWC_otg driver. This
module is dynamically installed after Linux is booted using the insmod command. When the module is
installed, the The dwc_otg_driver_init Function function is called. When the module is removed (using
rmmod), the The dwc_otg_driver_cleanup Function function is called.

This module also defines data structures for the The dwc_otg_driver Data Structure and The
dwc_otg_device Data Structure. These structures allow the OTG driver to comply with the standard Linux
driver model, in which devices and drivers are registered with a bus driver. This has the benefit that Linux
can expose attributes of the driver and device in its special sysfs virtual file system. Users can then read or
write files in this file system to perform diagnostics on driver components or the device.

221 Data Structures
Sections 2.2.1.1-2.2.1.2 describe the data structures used by the DWC_otg driver module.

2211 The dwc_otg_driver Data Structure

The dwc_otg_driver structure defines the methods to be called by a bus driver during the life cycle of a
device on that bus. Both drivers and devices are registered with a bus driver. The bus driver matches
devices to drivers based on information in the device and driver structures. dwc_otg_driver can be
registered with either the Im_bus or PCI.

The following structure registers dwc_otg_driver with the Im_bus.

struct lm driver dwc otg driver = {
.drv = {.name = "dwc_otg"},
.probe = dwc_otg driver probe,
.remove = dwc_otg driver remove,
}i
This bus is specific to the [IPMate version of Linux. It is used for devices implemented on ARM logic module
boards. In the IPMate development system, the DWC_otg controller is implemented on an FPGA that
resides on an ARM Logic Module board.

The IPMate version of Linux also defines an Im_device structure. An Im_device is created at system
initialization for each logic module present in the system. One of these logic modules is the board
containing the FPGA for the DWC_otg controller. Resources (memory address range and interrupt request
number) are allocated for each Im_device at system initialization and stored in the Im_device structure.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Environment-Specific Features i

The following structure registers dwc_otg_driver with the PCI.

static struct pci driver dwc otg driver = {
.name = "dwc_otg",
.id table = pci ids,
.probe = dwc_otg driver probe,
.remove = dwc_otg driver remove,
.driver = {

.name = (char*)dwc_driver name,
b
}i
The probe function of The dwc_otg_driver Data Structure is called when The dwc_otg_driver Data
Structure is registered. The remove function is called when the The dwc_otg_driver Data Structure is
unregistered.

221.2 The dwc_otg_device Data Structure

The dwc_otg_device structure is a wrapper that encapsulates the driver components used to manage a
single DWC_otg controller.

typedef struct dwc_otg device

{
/** Base address returned from ioremap() */
void *base;

#ifdef CONFIG MACH IPMATE
struct 1lm device *1mdev;
#elif CONFIG_PCI

int rsrc_start;

int rsrc_len;

#endif

/** Pointer to the core interface structure. */
dwc_otg core if t *core if;

/** Register offset for Diagnostic API.*/
uint32 t reg offset;

/** Pointer to the PCD structure. */
struct dwc_otg pcd *pcd;

/** Pointer to the HCD structure. */
struct dwc_otg hcd *hcd;

/** Flag to indicate whether the common IRQ handler is installed. */
uint8 t common irg installed;

} dwc_otg device t;

April 2009 Synopsys, Inc.

[Environment-Specific Features Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

222 Initialization and Cleanup Functions

Sections 2.2.2.1-2.2.2.4 describe the DWC_otg driver module’s initialization and cleanup functions.

2221 The dwc_otg_driver_init Function

The dwc_otg_driver_init function is called when the The dwc_otg_driver Data Structure is installed with
the insmod command. It registers the The dwc_otg_driver Data Structure structures shown in Section
2.2.1.1. This causes the The dwc_otg_driver_probe Function function to be called.

int dwc otg driver init(void)

2222 The dwc_otg_driver_probe Function

The dwc_otg_driver_probe function is called when an Im_device is bound to a The dwc_otg_driver Data
Structure. The dwc_otg_driver_probe function creates the driver components required to control the device
(CIL, HCD, and PCD) and initializes the device. Additionally, device and driver attributes are exposed in
the sysfs file system.

The driver components are stored in a The dwc_otg_device Data Structure structure. A reference to the The
dwc_otg_device Data Structure is saved in the Im_device. This allows the driver to access the The
dwc_otg_device Data Structure structure on subsequent calls to driver methods for this device.

int dwc_otg driver probe (
#ifdef CONFIG MACH IPMATE
struct 1lm device * dev
#elif CONFIG PCI
struct pci dev * dev, const struct pci device id *id
#endif
)

2223 The dwc_otg_driver_remove Function

The dwc_otg_driver_remove function is called when an Im_device is unregistered with its bus driver. This
happens, for example, when the rmmod command is executed. The device may or may not be electrically
present. When it is present, the driver stops device processing. Any resources used on behalf of this device
are freed.

int dwc otg driver remove (
#ifdef CONFIG MACH IPMATE
struct 1lm device * dev
#elif CONFIG PCI
struct pci dev * dev
#endif

)

2.2.2.4 The dwc_otg_driver_cleanup Function

The dwc_otg_driver_cleanup function is called when the driver is removed from the kernel with the rmmod
command.

void dwc_otg driver cleanup (void)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Environment-Specific Features i

2.2.3 Module Parameters

The parameters shown in Table 2-1 may be specified when starting the module. These parameters define
how the DWC_otg controller should be configured. Parameter values are passed to the CIL initialization
function The dwc_otg_cil_init Function.

Table 2-1 CIL Linux Module Parameters

Parameter Name Description

otg_cap Specifies the OTG capabilities. The driver automatically detects this parameter’s
value when none is specified.

e 0: HNP- and SRP-capable (default, when available)
e 1: SRP Only-capable
e 2: Non-HNP/SRP-capable

dma_enable Specifies whether to use Slave or DMA mode for accessing the data FIFOs.The
driver automatically detects this parameter’s value when none is specified.

e 0: Slave
* 1: DMA (default, when available)

dma_burst_size The DMA Burst size (applicable only for External DMA mode).
Values: 1, 4, 8 16, 32 (default), 64, 128, 256

speed Specifies the maximum speed of operation in Host and Device modes. The actual
speed depends on the speed of the attached device and the value of phy_type.

e 0: High-Speed (default, when available)
e 1: Full-Speed

host_support_fs_Is_low_power Specifies whether Low Power mode is supported when attached to a Full-Speed or
Low-Speed device in Host mode.

e 0: Don’t support Low Power mode (default)
* 1: Support Low Power mode

host_ls_low_power_phy_clk Specifies the PHY clock rate in Low Power mode when connected to a Low-Speed
device in Host mode. This parameter is applicable only when the
host_support_fs_Is_low_power module parameter is set to 1.

* 0: 48 MHz (default)
* 1:6MHz

enable_dynamic_fifo e 0: Use coreConsultant FIFO size parameters
* 1: Allow dynamic FIFO sizing (default)

data_fifo_size Total number of 4-byte words in the data FIFO memory. This memory includes the
RxFIFO, Non-Periodic TxFIFO, and Periodic TxFIFOs.

Range: 32 to 32768 (default 8192)
Note: The total FIFO memory depth in the FPGA configuration is 8192.

dev_rx_fifo_size Number of 4-byte words in the RxFIFO in Device mode when dynamic FIFO sizing
is enabled.

Range: 16 to 32768 (default 1064)

April 2009 Synopsys, Inc.

Table 2-1

[Environment-Specific Features

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

CIL Linux Module Parameters (Continued)

Parameter Name

Description

dev_nperio_tx_fifo_size

dev_perio_tx_fifo_size_n
(n=11to 15)

host_rx_fifo_size

host_nperio_tx_fifo_size

host_perio_tx_fifo_size

max_transfer_size

max_packet_count

host_channels

dev_endpoints

phy_type

phy_utmi_width

Number of 4-byte words in the non-periodic Tx FIFO in device mode when dynamic
FIFO sizing is enabled.

e When en_multiple_tx_fifo mode is enabled, dev_nperio_tx_fifo_size is used only
for endpoint 0

e When en_multiple_tx_fifo mode is not enabled, dev_nperio_tx_fifo_size is used
for all non-periodic endpoints.

Range: 16 to 32768 (default 1024)

Number of 4-byte words in each of the Periodic TxFIFOs in Device mode.
Range: 4 to 768 (default 256)

Number of 4-byte words in the RxFIFO in Host mode when dynamic FIFO sizing is
enabled.

Range: 16 to 32768 (default 1024)

Number of 4-byte words in the Non-Periodic TxFIFO in Host mode when dynamic
FIFO sizing is enabled.

Range: 16 to 32768 (default 1024)

Number of 4-byte words in the Host Periodic TxFIFO when dynamic FIFO sizing is
enabled.

Range: 16 to 32768 (default 1024)

The maximum transfer size supported in bytes.
Range: 2047 to 65535 (default 65535)

The maximum number of packets in a transfer.
Range: 15 to 511 (default 511)

The number of host channel registers to use.
1 to 16 (default 12)
Note: The FPGA configuration supports a maximum of 12 host channels.

The number of endpoints in addition to endpoint O available for Device mode
operations.

Range: 1 to 15 (default 6 IN and OUT)

Note: The FPGA configuration supports a maximum of 6 IN and OUT endpoints in
addition to endpoint 0.

Specifies the type of PHY interface to use. By default, the driver automatically
detects phy_type.

e 0: Full-Speed
* 1: UTMI+ (default, when available)
e 2:ULPI

Specifies the UTMI+ data width. This parameter is only applicable for a PHY_TYPE
of UTMI+. Also, this parameter is applicable only when the OTG_HSPHY_WIDTH
coreConsultant parameter is set to 8 and 16 bits, meaning that the core has been
configured to work at either data path width.

Value: 8 or 16 bits (default 16)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Environment-Specific Features i

Table 2-1 CIL Linux Module Parameters (Continued)

Parameter Name

Description

phy_ulpi_ddr

i2c_enable

ulpi_fs_ls

ts_dline

en_multiple_tx_fifo

dev_tx_fifo_size_n
(n=1to 15)

thr_ctl[2:0]

tx_thr_len
rx_thr_len

dma_desc_enable

Specifies whether the ULPI operates at double or single data rate. This parameter is
only applicable when PHY_TYPE is ULPI.

0: Single data rate ULPI interface with 8-bit-wide data bus (default)
1: Double data rate ULPI interface with 4-bit-wide data bus

I°C interface for full speed PHY. This parameter is applicable only when PHY_TYPE
=FS.

e 0: Disabled (default)

e 1: Enabled

ULPI FS/LS mode only.
* 0: Disabled (default)
e 1: Enabled

Term select D-Line pulsing for all PHYs.
* 0: Disabled (default)
¢ 1: Enabled

Specifies whether dedicated transmit FIFOs are enabled for non periodic IN
endpoints in device mode

Number of 4-byte words in each of the Tx FIFOs in device mode when dynamic
FIFO sizing is enabled.

4 to 768 (default 256)

Thresholding control flag [2:0]
e Bit 0: non-ISO Tx Thresholding

- 1: Enabled
- 0: Disabled
e Bit 1: ISO Tx Thresholding
- 1: Enabled
- 0: Disabled
* Bit 2: Rx Thresholding
- 1: Enabled
- 0: Disabled

Thresholding length for Tx FIFOs
Thresholding length for Rx FIFOs

Specifies whether to use Buffer DMA or Descriptor DMA mode for accessing the
data FIFOs. The driver automatically detects the value for this parameter if none is
specified.

¢ 0: Disabled

e 1: Enabled (default)

April 2009

Synopsys, Inc.

[Environment-Specific Features Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Table 2-1 CIL Linux Module Parameters (Continued)

Parameter Name

Description

pti_enable

mpi_enable

Ipm_enable

ic_usb_cap

ahb_thr_ratio

Specifies whether to use the enhanced periodic Transfer Interrupt mode. The driver
will automatically detect the value for this parameter if none is specified.

e 0: Disabled (default)
e 1: Enabled

Specifies whether to use the Multiprocessor Interrupt mode. The driver will
automatically detect the value for this parameter if none is specified.

e 0: Disabled (default)
e 1: Enabled

Enable LPM support
e 0: LPM Disabled
* 1:LPM Enabled (default)

Enable IC_USB capability
* 0: IC_USB capability is not enabled (default)
¢ 1:IC_USB capability is enabled

Threshold Ratio

e 0: AHB Threshold = MAC Threshold

e 1: AHB Threshold = 1/2 MAC Threshold
e 2: AHB Threshold = 1/4 MAC Threshold
e 3: AHB Threshold = 1/8 MAC Threshold

@ Note Thresholding has not been thoroughly tested with release 2.70a

224 sysfs Attributes

The Linux sysfs file system provides diagnostic access to the controller hardware and the driver software.
This file system is mounted at /sys in the directory structure. Kernel attributes are exported to this file
system as regular files. These files may be read to access controller/driver status or written to modify
controller/driver state.

Table 2-2 shows the attributes provided by the DWC_otg driver.

Table 2-2 Linux sysfs Attributes

Name Description Access
mode Returns the current mode: Read

* 0: Device mode

* 1:Host mode
hnpcapable Gets or sets the HNP-capable bit in the Core USB Configuration register Read/Write

(GUSBCFGQG). Read returns the current value.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Environment-Specific Features i

Table 2-2 Linux sysfs Attributes (Continued)
Name Description Access
srpcapable Gets or sets the SRP-capable bit in the Core USB Configuration register Read/Write
(GUSBCFGQG). Read returns the current value.
hnp Initiates the Host Negotiation Protocol. Read returns the status. Read/Write
srp Initiates the Session Request Protocol. Read returns the status. Read/Write
remote_wakeup On a read, shows the remote wakeup status. Read/Write
On a write, initiates a remote wakeup of the host.
When bit 0 is 1 and Remote Wakeup is enabled, the Remote Wakeup signalling bit in
the Device Control register (DCTL) is set for 1 millisecond.
buspower Gets or sets the Power State of the bus Read/Write
e 0: Off
* 1:0n
bussuspend Suspends the USB Read/Write
busconnected Gets the connection status of the bus Read
gotgcitl Gets or sets the OTG Control and Status register (GOTGCTL) Read/Write
gusbcfg Gets or sets the Core USB Configuration register (GUSBCFG) Read/Write
grxfsiz Gets or sets the Receive FIFO Size register (GRXFSIZ) Read/Write
gnptxfsiz When en_multiple_tx_fifo is not set: Read/Write
* Gets or sets the Non-Periodic Transmit FIFO Size register (GNPTXFSIZ)
When en_multiple_tx_fifo is set:
* Gets or sets the Endpoint0 Transmit FIFO Size Register
gpvndctl Gets or sets the PHY Vendor Control register (GPVNDCTL) Read/Write
ggpio Gets the value in the lower 16 bits of the General Purpose 1/O register (GGPIO) or Read/Write
sets the upper 16 bits
guid Gets or sets the value of the User ID register (GUID) Read/Write
gsnpsid Gets the value of the Synopsys ID register (GSNPSID) Read
devspeed Gets or sets the device speed setting in the Device Configuration register (DCFG) Read/Write
enumspeed Gets the device’s enumeration speed Read
hptxfsiz Gets the value of the Host Periodic Transmit FIFO Size register (HPTXFSIZ) Read
hprt0 Gets or sets the value in the Host Port Control and Status register ((HPRT) Read/Write
regvalue Gets or sets the value of the register at the offset in the regoffset attribute Read/Write
regoffset Gets or sets the register offset for the next register access Read/Write
regdump Dumps the contents of core registers Read
April 2009 Synopsys, Inc.

[Environment-Specific Features Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Table 2-2 Linux sysfs Attributes (Continued)

Name Description Access
spramdump Dumps the contents of SPRAM Read
hcddump Dumps the current HCD state Read
hcd_frrem Shows the average value of the Frame Time Remaining field in the Host Frame Read

Number/Frame Time Remaining register (HFNUM) when an SOF interrupt occurs.
This can be used to determine the average interrupt latency. Also shows the average
Frame Time Remaining value for start_transfer and the “a” and “b” sample points.
The “a” and “b” sample points may be used during debugging to determine how long
it takes to execute a section of the HCD code.

Ipm_response Gets or sets LPM response mode. Read/Write
Applicable only in device mode.
e 0: NYET response to LPM transaction
¢ 1: ACK response to LPM transaction

sleep_status Shows the core’s sleep state. On write, if in sleep state and in host mode, initiates Read/Write
resume for local device.

e 0: Coreis notin Sleep state
e 1:Core isin Sleep state

inv_sel_hsic Gets or sets the “HSIC-Invert Select” bit in the GLPMCFG Register. Read returns the Read/Write
current value.

hsic_connect Gets or sets the “HSIC-Connect” bit in the GLPMCFG Register. Read returns the Read/Write
current value.

Example usage (assuming the DWC_otg controller is on Logic Module 0 in the IPMate):
To get the current mode:

cat /sys/devices/1m0/mode
To power down the USB:

echo 0 > /sys/devices/1m0/buspower

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3

Core Interface Layer

3.1 Core Interface Layer Overview

The Core Interface Layer (CIL) provides basic services for accessing and managing the DWC_otg hardware.
These services are used by both the Host Controller Driver and the Peripheral Controller Driver.

The CIL manages the memory map for the core so that the HCD and PCD do not have to do this separately.
The CIL also handles such basic tasks as reading/writing the registers and data FIFOs in the controller.
Some of the data access functions provide encapsulation of several operations required to perform a task,
such as writing multiple registers to start a transfer. Finally, the CIL performs basic services that are not
specific to either the Host or Device modes of operation. These services include managing the OTG Host
Negotiation Protocol (HNP) and Session Request Protocol (SRP).

The Core Interface Layer has the following requirements:
< Provide basic controller operations
< Be completely portable
% Use a portability library to abstract the OS services used

Though most of the CIL functionality is used by the appropriate modules’ HCD and PCD core layers, the
CIL exposes a core API that is also used by the OS wrapper layer, including common initialization, interrupt
generic handler, and core parameter access functions.

3.2 Data Structures

This section defines the data structures used by the Core Interface Layer API functions.

3.2.1 Control and Status Register Structures

The structures in Sections 3.2.1.1-3.2.1.3 define the size and relative field offsets for each register in the
DWC_otg controller. These structures are not created in memory through normal memory allocation
methods. After mapping memory for the controller into the OS memory space, these structures are overlaid
on the mapped memory by setting the appropriate base address for each structure. Each register can then be
accessed via its address in one of these structures.

The precise method for accessing registers is OS-specific: it may be as simple as directly reading or writing a
register field in one of these structures, or it may require passing the mapped register address to a
read/write method defined by the OS.

April 2009 Synopsys, Inc. H

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.2.1.1 Core Global Registers Structure
The dwc_otg_core_global_regs structure defines the size and relative field offsets for the Core Global

registers.
typedef struct dwc_otg core global regs ({

volatile uint32 t gotgctl; // OTG Control and Status Register
// 000h

volatile uint32 t gotgint; // OTG Interrupt Register
// 004h

volatile uint32 t gahbcfg; // Core AHB Configuration Register
// 008h

volatile uint32 t gusbcfg; // Core USB Configuration Register
// 00Ch

volatile uint32 t grstctl; // Core Reset Register
// 010h

volatile uint32 t gintsts; // Core Interrupt Register
// 014h

volatile uint32 t gintmsk; // Core Interrupt Mask Register
// 018h

volatile uint32 t grxstsr; // Receive Status Queue Read
// Register (Read Only)
// 01Ch

volatile uint32 t grxstsp; // Receive Status Queue Read &
// POP Register (Read Only)
// 020h

volatile uint32 t grxfsiz; // Receive FIFO Size Register
// 024h

volatile uint32 t gnptxfsiz; // Non Periodic Transmit FIFO Size

// Register
// when en multiple tx fifo is
// set ep0 Transmit FIFO size

// 028h
volatile uint32 t gnptxsts; // Non Periodic Transmit FIFO/Queue
// Status Register (Read Only)
// 02Ch
volatile uint32 t gi2cctl; // I2C Access Register
// 030h
volatile uint32 t gpvndctl; // PHY Vendor Control Register
// 034h
volatile uint32 t ggpio; // General Purpose Input/Output Register
// 038h
volatile uint32 t guid; // User ID Register
// 03Ch
volatile uint32 t gsnpsid; // Synopsys ID Register (Read Only)
// 040h
volatile uint32 t ghwcfgl; // User HW Configl Register
// (Read Only)
// 044h
volatile uint32 t ghwcfg2; // User HW Config2 Register
// (Read Only)
// 048h
volatile uint32 t ghwcfg3; // User HW Config3 Register
// (Read Only)
// 04Ch

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

volatile uint32 t ghwcfg4; // User HW Config4 Register
// (Read Only)
// 050h
uint32 t reserved[43]; // Reserved
// 054h - OFFh
volatile uint32 t hptxfsiz; // Host Periodic Transmit FIFO
// Size Register
// 100h
volatile uint32 t
dptxfsiz dieptxf[15];
// When en multiple tx fifo is
// not set
// Device Periodic Transmit
// FIFO#n Register (n= 1 to 15)
// 104h - 13Ch
// Otherwise Device Transmit
// FIFO#n Register (n= 1 to 15)
// 104h - 13Ch
} dwc_otg core global regs t;

3.2.1.2 Device Mode Register Structures
The following structures define the size and relative field offsets for Device mode registers.

// Device Global Registers 800h-BFFh
typedef struct dwc_otg dev global regs ({

volatile uint32 t dcfg; // Device Configuration Register
// 800h
volatile uint32 t dctl; // Device Control Register
// 804h
volatile uint32 t dsts; // Device Status Register
// (Read Only)
// 808h
uint32 t unused; // Reserved
// 80Ch
volatile uint32 t diepmsk; // Device IN Endpoint Common
// Interrupt Mask Register
// 810h
volatile uint32 t doepmsk; // Device OUT Endpoint Common
// Interrupt Mask Register
// 814h
volatile uint32 t daint; // Device All Endpoints Interrupt
// Register
// 818h
volatile uint32 t daintmsk; // Device All Endpoints Interrupt
// Mask Register
// 81Ch
volatile uint32 t dtkngrl; // Device IN Token Queue Read
// Register-1 (Read Only)
// 820h
volatile uint32 t dtkngr2; // Device IN Token Queue Read
// Register-2 (Read Only)
// 824h
volatile uint32 t dvbusdis; // Device VBUS Discharge Register
// 828h

April 2009 Synopsys, Inc.

Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

volatile uint32 t dvbuspulse; // Device VBUS Pulse Register
// 82Ch
volatile uint32 t dtkngr3 dthrectl;
// Device IN Token Queue Read
// Register-3 (Read Only)
// If dedicated FIFOs are enabled
// threshold control reg
// 830h
volatile uint32 t dtkngr4 fifoemptymsk;
// Device IN Token Queue Read
// Register-4 (Read Only)
// 1f dedicated FIFOs are enabled
// FIFOs empty intr mask reg.
// 834h
volatile uint32 t deachint;
// Device Each Endpoint Interrupt
// Register (Read Only)
// 838h
volatile uint32 t deachintmsk;
// Device Each Endpoint Interrupt
// mask Register (Read/Write)
// 83Ch
volatile uint32 t diepeachintmsk([16];
// Device Each In Endpoint
// Interrupt mask Register
// (Read/Write) .
// 840h
volatile uint32 t doepeachintmsk[16];
// Device Each Out Endpoint
// Interrupt mask Register
// (Read/Write) .
// 834h
} dwc_otg dev global regs t;

// Device Logical IN Endpoint-Specific Registers 900h-AFCh
typedef struct dwc _otg dev in ep regs {
volatile uint32 t diepctl; // Device IN Endpoint Control
// Register
// 900h + (ep num * 20h) + 00h

uint32 t reserved04; // Reserved

// 900h + (ep num * 20h) + 04h
volatile uint32 t diepint; // Device IN Endpoint Interrupt

// Register

// 900h + (ep num * 20h) + 08h
uint32 t reserved0C; // Reserved

// 900h + (ep num * 20h) +0Ch
volatile uint32 t dieptsiz; // Device IN Endpoint Transfer

// Size Register

// 900h + (ep num * 20h) + 10h
volatile uint32 t diepdma; // Device IN Endpoint DMA

// Address Register

// 900h + (ep num * 20h) + 14h

Synopsys, Inc.

April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

volatile uint32 t dtxfsts // Device In Endpoint Transmit Fifo
// Status Register
// 900h + (ep _num * 20h) + 18h
volatile wuint32 diepdmab;// DMA Buffer address register
// - 900h + (ep _num * 20h) + 1Ch
} dwc_otg dev _in ep regs t;

// Device Logical OUT Endpoint-Specific Registers BOOh-CFCh
typedef struct dwc_otg dev out ep regs ({
volatile uint32 t doepctl; // Device OUT Endpoint Control
// Register
// B0Oh + (ep _num * 20h) + 0Oh
volatile uint32 t doepfn; // Device OUT Endpoint Frame
// number Regsiter
// BOOh + (ep num * 20h) + 04h
volatile uint32 t doepint; // Device OUT Endpoint Interrupt
// Register
// BOOh + (ep num * 20h) + 08h

uint32 t reserved0C; // Reserved
// B0O + (ep _num * 20h) +0Ch
volatile uint32 t doeptsiz; // Device OUT Endpoint Transfer

// Size Register

// B0OOh + (ep num * 20h) + 10h
volatile uint32 t doepdma; // Device OUT Endpoint DMA

// Address Register

// BOOh + (ep num * 20h) + 14h
uint32 t unused // BOOh + (ep num * 20h) + 18h
volatile uint32 t doepdmab; // DMA Buffer address register

// - BOOh + (ep num * 20h) + 1Ch

} dwc_otg dev out ep regs t;

3.21.3 Host Mode Register Structures
The following structures define the size and relative field offsets for the Host mode registers.

// Host Global Registers 400h-7FFh
typedef struct dwc_otg host global regs ({

volatile uint32 t hcfg; // Host Configuration Register
// 400h

volatile uint32 t hfir; // Host Frame Interval Register
// 404h

volatile uint32 t hfnum; // Host Frame Number /
// Frame Remaining Register
// 408h

uint32 t reserved40C; // Reserved
// 40Ch

volatile uint32 t hptxsts; // Host Periodic Transmit FIFO/
// Queue Status Register
// 410h

volatile uint32 t haint; // Host All Channels Interrupt
// Register
// 414h

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

volatile uint32 t haintmsk; // Host All Channels Interrupt
// Mask Register
// 418h
volatile uint32 t hflbaddr; // Host Frame List Base Address
// Register
// 41Ch
} dwe_otg host global regs t;

// Host Channel Specific Registers 500h-5FCh
typedef struct dwc_otg hc regs ({

volatile uint32 t hcchar; // Host Channel 0 Characteristic

// Register

// 500h + (chan num * 20h) + 00h
volatile uint32 t hcsplt; // Host Channel 0 Split Control

// Register

// 500h + (chan num * 20h) + 04h
volatile uint32 t hcint; // Host Channel 0 Interrupt

// Register

// 500h + (chan num * 20h) + 08h
volatile uint32 t hcintmsk; // Host Channel 0 Interrupt

// Mask Register

// 500h + (chan num * 20h) + 0Ch
volatile uint32 t hctsiz; // Host Channel 0 Transfer Size

// Register

// 500h + (chan num * 20h) + 10h
volatile uint32 t hcdma; // Host Channel 0 DMA Address

// Register

// 500h + (chan num * 20h) + 14h

uint32 t reserved; // Reserved
// 500h + (chan num * 20h) + 18h
volatile uint32 t hcdmab; // Host Channel 0 DMA Buffer

// Address Register
// - 500h + (chan num * 20h) + 1Ch
} dwc_otg hc regs t;

3.2.2 OTG Device Interface Structure

The dwc_otg_dev_if structure contains information required to manage the DWC_otg controller acting in
device mode. It is the programming view of the controller’s device-specific aspects.

typedef struct dwc otg dev if
{
/** Pointer to device Global registers.
* Device Global Registers starting at offset 800h
*/
dwc_otg device global regs t *dev_global regs;
#define DWC DEV_GLOBAL REG OFFSET 0x800

/**
* Device Logical IN Endpoint-Specific Registers 900h-AFCh
*/

dwc_otg dev_in ep regs t *in ep regs[MAX EPS CHANNELS] ;

#define DWC_DEV_IN EP REG OFFSET 0x900
#define DWC_EP REG OFFSET 0x20

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

/** Device Logical OUT Endpoint-Specific Registers BOOh-CFCh */
dwc_otg dev_out _ep regs t *out ep regs [MAX EPS CHANNELS] ;
#define DWC DEV_OUT EP REG OFFSET 0xB0O

/* Device configuration information*/

uint8 t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
uint8 t num in eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
uint8 t num out eps; /**< Number # of Rx EP range: 0-15 exept ep 0%/

/** Size of periodic FIFOs (Bytes) */
uintlé_t perio tx fifo size[MAX PERIO FIFOS];

/** Size of Tx FIFOs (Bytes) */
uintlé_t tx fifo size[MAX TX FIFOS];

/** Thresholding enable flags and length varaiablesg **/
uintlé_t rx thr en;
uintlé_t iso_tx thr en;
uintlé_t non iso_tx thr en;

uintlé_t rx thr length;
uintlé_t tx thr length;

/**
* Pointers to the DMA Descriptors for EPO0 Control
* transfers (virtual and physical)

*/

/** 2 descriptors for SETUP packets */
uint32 t dma setup desc addr[2];
dwc_otg dev_dma desc t* setup desc addr[2];

/** Pointer to Descriptor with latest SETUP packet */
dwc _otg dev _dma desc t* psetup;

/** Index of current SETUP handler descriptor */
uint32 t setup desc index;

/** Descriptor for Data In or Status In phases */
uint32 t dma in desc addr;
dwc_otg dev_dma desc _t* in desc_ addr;

/** Descriptor for Data Out or Status Out phases */
uint32 t dma out desc_addr;
dwc_otg dev_dma desc_t* out desc_addr;

} dwc_otg dev if t;

3.2.3 OTG Host Interface Structure

The dwc_otg_host_if structure contains information required to manage the DWC_otg controller acting in
Host mode. It is the programming view of the controller’s host-specific aspects.

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

typedef struct dwc_otg host if ({
// Host Global Registers starting at offset 400h
dwc_otg host global regs t *host global regs;

// Host Port 0 Control and Status Register at offset 440h
volatile uint32 t *hprto;

// Host Channel Specific Registers 500h-5FCh
dwc_otg hc_regs t *hc _regs|[1l6];

// Host configuration information

uint8 t num host channels; // range: 1-16
uint8 t perio eps supported; // 0: no, 1l: yes
uintlé t perio tx fifo size; // Only 1 host periodic TxFIFO

} dwc_otg host if t;

3.2.4 OTG Core Interface Structure

The dwc_otg_core_if structure contains information required to manage the DWC_otg controller acting in
either Host or Device mode. It is the programming view of the controller as a whole.

typedef struct dwc _otg core if

{

/** Parameters that define how the core should be configured.*/
dwc_otg core params_t *core_ params;

/** Core Global registers starting at offset 000h. */
dwc_otg core global regs t *core global regs;

/** Device-specific information */

dwc_otg dev if t *dev if;
/** Host-specific information */
dwc_otg host if t *host if;

/** Value from SNPSID register */
uint32 t snpsid;

/*
* Set to 1 if the core PHY interface bits in USBCFG have been
* initialized.
*/

uint8 t phy init done;

/*
* SRP Success flag, set by srp success interrupt in FS I2C mode
*/

uint8 t srp success;

uint8 t srp timer started;

/* Common configuration information */
/** Power and Clock Gating Control Register */
volatile uint32 t *pcgcctl;
#define DWC_OTG PCGCCTL_OFFSET 0xE00

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

/** Push/pop addresses for endpoints or host channels.*/
uint32 t *data fifo[MAX EPS CHANNELS] ;

#define DWC_OTG DATA FIFO OFFSET 0x1000

#define DWC_OTG DATA FIFO SIZE 0x1000

/** Total RAM for FIFOs (Bytes) */

uintlé _t total fifo size;

/** Size of Rx FIFO (Bytes) */

uintlé t rx fifo size;

/** Size of Non-periodic Tx FIFO (Bytes) */
uintlé6_t nperio tx fifo size;

/** 1 if DMA is enabled, 0 otherwise. */
uint8 t dma_ enable;

/** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
uint8 t dma_ desc_enable;

/** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
uint8 t pti _enh enable;

/** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
uint8 t multiproc int enable;

/** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
uint8_t en multiple tx fifo;

/** Set to 1 if multiple packets of a high-bandwidth transfer is in
* process of being queued */
uint8 t queuing high bandwidth;

/** Hardware Configuration -- stored here for convenience.*/
hwcfgl data_t hwcfgl;
hwcfg2 data_t hwcfg2;
hwcfg3 data_t hwcfg3;
hwcfg4 data_t hwcfg4;

/** Host and Device Configuration -- stored here for convenience.*/
hcfg data_t hcfg;
dcfg data_t dcfg;

/** The operational State, during transations
* (a_host>>a peripherial and b device=>b host) this may not
* match the core but allows the software to determine
* transitions.
*/

uint8 t op_ state;

/**

* Set to 1 if the HCD needs to be restarted on a session request

* interrupt. This is required if no connector ID status change has
* occurred since the HCD was last disconnected.

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide
*/
uint8 t restart hcd on session regq;

/** HCD callbacks */
/** A-Device is a host */

#define A HOST (1)
/** A-Device is a_suspend */
#define A SUSPEND (2)

/** A-Device is a peripherial */
#define A PERIPHERAL (3)

/** B-Device is operating as a Peripheral. */
#define B PERIPHERAL (4)

/** B-Device is operating as a Host. */
#define B _HOST (5)

/** HCD callbacks */
struct dwc_otg cil callbacks *hcd cb;
/** PCD callbacks */
struct dwc_otg cil callbacks *pcd cb;

/** Device mode Periodic Tx FIFO Mask */
uint32 t p_ tx msk;

/** Device mode Periodic Tx FIFO Mask */
uint32 t tx msk;

/** Workqueue object used for handling several interrupts */
struct workqueue struct *wqg otg;

/** Work object used for handling "Connector ID Status Change" Interrupt */
struct work struct w_conn id;

/** Work object used for handling "Wakeup Detected" Interrupt */
struct delayed workw wkp;

/** Lx state of device */

dwc _otg 1lx state e 1lx state;

} dwc_otg core if t;

3.25 Endpoint Structure

The dwc_ep structure represents the state of a single endpoint when the DWC_otg controller is in Device
mode. It contains the data items required for an endpoint to be activated and transfer packets.

typedef struct dwc_ep {
/** EP number used for register address lookup */
uint8_ t num;
/** EP direction 0 = OUT */
unsigned is_ in:1;
/** EP active. */
unsigned active:1;

/**
* Periodic Tx FIFO # for IN Eps.
* For INTR EP set to 0 to use non-periodic Tx FIFO

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

* If dedicated Tx FIFOs are enabled for all
* IN Eps - Tx FIFO # FOR IN Eps
*/
unsigned tx fifo num:4;
/** EP type: 0 - Control, 1 - ISOC, 2 - BULK,3 - INTR */
unsigned type:2;
#define DWC_OTG EP TYPE CONTROL 0
#define DWC_OTG EP_TYPE ISOC 1
#define DWC_OTG EP TYPE BULK 2
#define DWC_OTG EP TYPE INTR 3
/** DATA start PID for INTR and BULK EP */
unsigned data pid start:1;
/** Frame (even/odd) for ISOC EP */
unsigned even odd frame:1;
/** Max Packet bytes */
unsigned maxpacket:11;

/** Max Transfer size */
uint32 t maxxfer;

/** @name Transfer state */

/** @{ */
/**

* Pointer to the beginning of the transfer
* buffer - do not modify during transfer.

*/
dwc _dma_t dma_addr;

dwc _dma_t dma_desc addr;
dwc_otg dev_dma desc_t *desc_addr;

uint8 t *start xfer buff;

/** pointer to the transfer buffer */
uint8 t *xfer buff;

/** Number of bytes to transfer */
unsigned xfer len:19;

/** Number of bytes transferred. */
unsigned xfer count:19;

/** Sent ZLP */

unsigned sent zlp:1;

/** Total len for control transfer */
unsigned total len:19;

/** stall clear flag */
unsigned stall clear flag:1;

#ifdef DWC_UTE_ CFI
/* The buffer mode */
data_buffer mode e buff mode;

/* The chain of DMA descriptors.
* MAX DMA DESCS PER EP will be allocated for each active EP.

Core Interface Layer

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

*/

dwc_otg dev_dma desc_t *descs;

/* The DMA address of the descriptors chain start */
dma_addr_t descs_dma_addr;
/** This variable stores the length of the last enqueued request */
uint32 t cfi reqg len;
#endif //DWC_UTE_CFI
/** Allocated DMA Desc count */
uint32 t desc_cnt;

#ifdef DWC_EN_ISOC
/**
* Variables specific for ISOC EPs
*
*/
/** DMA addresses of ISOC buffers */
dwc _dma t dma_addroO;
dwc _dma t dma_addrl;

dwc_dma_t iso dma desc_ addr;
dwc_otg dev_dma desc t *iso desc addr;

/** pointer to the transfer buffers */
uint8 t *xfer buffo;
uint8_t *xfer buffl;

/** number of ISOC Buffer is processing */
uint32_ t proc_buf num;

/** Interval of ISOC Buffer processing */
uint32 t buf proc intrvl;

/** Data size for regular frame */
uint32 t data per frame;

/** Data size for pattern frame */
uint32 t data pattern frame;

/** Frame number of pattern data */
uint32 t sync frame;

/** bInterval */
uint32 t bInterval;

/** ISO Packet number per frame */
uint32 t pkt per frm;

/** Next frame num for which will be setup DMA Desc */
uint32_ t next frame;

/** Number of packets per buffer processing */
uint32 t pkt cnt;

/** Info for all isoc packets */
iso pkt info t *pkt info;

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

/** current pkt number */
uint32 t cur pkt;

/** current pkt number */
uint8 t *cur pkt addr;

/** current pkt number */
uint32 t cur pkt dma addr;
#endif /* DWC_EN ISOC */
/** @} */
} dwe_ep t;

3.2.6 Host Channel Structure

The dwc_hc structure represents the state of a single host channel when the DWC_otg controller is in Host
mode. It contains the data items required to transfer packets to an endpoint via a host channel.

typedef struct dwc_hc

{

/** Host channel number used for register address lookup */
uint8 t hc_num;

/** Device to access */
unsigned dev_addr : 7;

/** EP to access */
unsigned ep num : 4;

/** EP direction. 0: OUT, 1: IN */

unsigned ep is in : 1;

/**
* EP speed.
* One of the following values:
* - DWC_OTG_EP_ SPEED LOW
* - DWC_OTG_EP_SPEED FULL
* - DWC_OTG_EP_SPEED HIGH
*

/

unsigned speed : 2;
#define DWC_OTG EP SPEED LOWO
#define DWC OTG EP SPEED FULL1
#define DWC_OTG EP SPEED HIGH?2

/**

* Endpoint type.

* One of the following values:

* - DWC_OTG_EP_TYPE CONTROL: 0
* - DWC_OTG_EP TYPE ISOC: 1

* - DWC_OTG_EP_TYPE BULK: 2

* - DWC_OTG_EP_TYPE INTR: 3

*

~

unsigned ep type : 2;

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

/** Max packet size in bytes */

unsigned max_ packet : 11;
/**
* PID for initial transaction.
* 0: DATAO,

* 1: DATA2,

* 2: DATALl, <brs>
* 3: MDATA (non-Control EP),
* SETUP (Control EP)
*

~

unsigned data pid start : 2;
#define DWC_OTG HC PID DATAO
#define DWC_OTG HC PID DATAZ2
#define DWC_OTG HC PID DATAl
#define DWC_OTG HC PID MDATA
#define DWC_OTG HC PID SETUP

w w N - o

/** Number of periodic transactions per (micro)frame */
unsigned multi count: 2;

/** @name Transfer State */

/** @{ */

/**
* In Buffer DMA mode this buffer will be used
* if xfer buff is not DWORD-aligned.
*/
dwc _dma_t align buff;
/** Pointer to the current transfer buffer position. */
uint8 t *xfer buff;
/** Total number of bytes to transfer. */
uint32 t xfer len;
/** Number of bytes transferred so far. */
uint32 t xfer count;
/** Packet count at start of transfer.*/
uintlé t start pkt count;

/**

* Flag to indicate whether the transfer has been started.
* Set to 1 if it has been started, 0 otherwise.

*/

uint8_t xfer started;

/**
* Set to 1 to indicate that a PING request should be issued on
* this channel. If 0, process normally.
*/

uint8 t do ping;

/**
* Set to 1 to indicate that the error count for this
* transaction is non-zero. Set to 0 if the error count is 0.

*/

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

uint8 t error state;

/**

* Set to 1 to indicate that this channel should be halted

* the next time a request is queued for the channel.

* This is necessary in slave mode if no request queue space
* is available when an attempt is made to halt the channel.
*/

uint8 t halt on queue;

/**
* Set to 1 if the host channel has been halted, but the
* core is not finished flushing queued requests. Otherwise 0.
*/

uint8 t halt pending;

/**

* Reason for halting the host channel.

*/
dwc_otg halt status e halt status;

/*

* Split settings for the host channel.

*/
uint8 t do split; /**< Enable split for the channel */
uint8 t complete split; /**< Enable complete split */
uint8 t hub_ addr; /**< Address of high speed hub */
uint8 t port addr; /**< Port of the low/full speed device */

/** Split transaction position

* One of the following values:

- DWC_HCSPLIT XACTPOS MID

- DWC_HCSPLIT XACTPOS BEGIN
- DWC_HCSPLIT XACTPOS END

- DWC _HCSPLIT XACTPOS ALL */
uint8 t xact pos;

* ok ko

/** Set when the host channel does a short read. */
uint8 t short read;

/**

* Number of requests issued for this channel since it was assigned to
* the current transfer (not counting PINGs) .

*/

uint8 t requests;

/**

* Queue Head for the transfer being processed by this channel.
*/
struct dwc_otg gh *gh;

[** @} */

/** Entry in list of host channels. */

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

DWC_CIRCLEQ ENTRY (dwc_hc)hc list entry;

/** @name Descriptor DMA support */
/** @{ */

/** Number of Transfer Descriptors. */
uint8_ t ntd;

/** Descriptor List physical address. */
dwc_dma_t desc list addr;

/** Scheduling micro-frame bitmap. */
uint8 t schinfo;

/** @} */
} dwec_hc t;

3.2.7 DMA Descriptor Structure
The following structure represents bit fields for the following Scatter/Gather DMA Descriptors in device

mode:
< Non ISO OUT/IN
< 1SO OUT
< ISOIN

/ * %

* This union represents the bit fields in the DMA Descriptor

* status quadlet for device. Read the quadlet into the <i>d32</i>

* member then set/clear the bits using the <is>b</i>it, <i>b iso out</i>
* and <i>b iso_in</i> elements.

*/

typedef union dev_dma_ desc sts

{

/** raw register data */
uint32 t d32;

/** quadlet bits */

struct

/** Received number of bytes */
unsigned bytes : 16;

unsigned reservedl6 22 : 7;

/** Multiple Transfer - only for OUT EPs */
unsigned mtrf : 1;

/** Setup Packet received - only for OUT EPs */
unsigned sr : 1;

/** Interrupt On Complete */

unsigned ioc : 1;

/** Short Packet */

unsigned sp : 1;

/** Last */

unsigned 1 : 1;

/** Receive Status */

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

unsigned sts : 2;
/** Buffer Status */
unsigned bs : 2;

} b

#ifdef DWC_EN ISOC
/** iso out quadlet bits */
struct
/** Received number of bytes */
unsigned rxbytes : 11;

unsigned reservedll : 1;

/** Frame Number */

unsigned framenum : 11;

/** Received ISO Data PID */
unsigned pid : 2;

/** Interrupt On Complete */
unsigned ioc : 1;

/** Short Packet */

unsigned sp : 1;

/** Last */

unsigned 1 : 1;

/** Receive Status */
unsigned rxsts : 2;

/** Buffer Status */
unsigned bs : 2;

} b iso out;

/** iso in quadlet bits */
struct {
/** Transmited number of bytes */
unsigned txbytes : 12;
/** Frame Number */
unsigned framenum : 11;
/** Transmited ISO Data PID */
unsigned pid : 2;
/** Interrupt On Complete */
unsigned ioc : 1;
/** Short Packet */
unsigned sp : 1;
/** Last */
unsigned 1 : 1;
/** Transmit Status */
unsigned txsts : 2;
/** Buffer Status */
unsigned bs : 2;
} b iso in;

#endif //DWC_EN ISOC

} dev _dma desc sts t;

/**
* Device DMA Descriptor structure
*

* DMA Descriptor structure contains two quadlets:

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

* Status quadlet and Data buffer pointer.
*/
typedef struct dwc_otg dev_dma_desc

{

/** DMA Descriptor status quadlet */

dev_dma_desc_sts_t status;
/** DMA Descriptor data buffer pointer */
uint32 t buf;

} dwc_otg dev dma desc t;

The following structure represents bit fields for Scatter/ Gather DMA Descriptors in host mode.
J*x*

* This union represents the bit fields in the DMA Descriptor
* status quadlet for host mode. Read the quadlet into the <i>d32</i>
* member then set/clear the bits using the <i>b</i>it elements.
*/
typedef union host dma desc_sts
{
/** raw register data */
uint32 t d32;
/** quadlet bits */

/* for non-isochronous */
struct
/** Number of bytes */
unsigned n _bytes : 17;
/**
* QTD offset to jump when Short Packet
* received - only for IN EPs
*/
unsigned gtd offset : 6;
/**
* Set to request the core to jump to alternate QTD
* if Short Packet received - only for IN EPs
*/
unsigned a gtd : 1;
/**
* Setup Packet bit. When set indicates that buffer
* contains setup packet - only for OUT EPs
*/
unsigned sup : 1;
/** Interrupt On Complete */
unsigned ioc : 1;
/** End of List */
unsigned eol : 1;
unsigned reserved27 : 1;
/** Rx/Tx Status */
unsigned sts : 2;
#define DMA DESC_STS PKTERR1
unsigned reserved30 : 1;
/** Active Bit */
unsigned a : 1;
} b;

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

/* for isochronous */

struct {
/** Number of bytes */
unsigned n bytes : 12;
unsigned reservedl2 24 : 13;
/** Interrupt On Complete */
unsigned ioc : 1;
unsigned reserved26 27 : 2;
/** Rx/Tx Status */
unsigned sts : 2;
unsigned reserved30 : 1;
/** Active Bit */
unsigned a : 1;

} b_isoc;

} host dma desc sts t;

/**
* Host-mode DMA Descriptor structure
*

* DMA Descriptor structure contains two quadlets:
* Status quadlet and Data buffer pointer.
*/

typedef struct dwc_otg host dma desc

{

/** DMA Descriptor status quadlet */
host dma desc _sts tstatus;
/** DMA Descriptor data buffer pointer */
uint32 tbuf;
} dwc_otg host dma desc t;

3.3 Core Interface Layer Initialization

Sections 3.3.1-3.3.2 describe the CIL functions that support initialization of the CIL Driver component and
the DWC_otg controller.

3.3.1 The dwc_otg_cil_init Function

The dwc_otg_cil_init function is called to initialize the DWC_otg CSR data structures. The register
addresses in the device and host structures are initialized from the base address supplied by the caller. The
calling function must make OS calls to get the base address of the DWC_otg controller registers. The
core_params argument holds the parameters that specify how the core shall be configured.

dwc_otg core if t *dwc otg cil init (const uint32 *reg base addr)

3.3.2 The dwc_otg_core_init Function

The dwc_otg_core_init function initializes the DWC_otg controller registers and prepares the core for
Device mode or Host mode operation.

void dwc_otg core init (dwc_otg core if t *otg core if)
Sections 3.3.2.1-3.3.2.3 describe the following initialization sequences:

% “Host and Device Initialization” on page 48

0,

% “Device Initialization” on page 49

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

< “Host Initialization” on page 50

3.3.2.1 Host and Device Initialization

The The dwc_otg_core_init Function function performs the following steps to initialize DWC_otg Core
Global registers that are used in both Host and Device modes:

1. Reads the GHWCFG1/2/3 registers to find the configuration parameters selected for the DWC_otg
core.

2. Programs the following fields in the GAHBCEFG register:

+ DMA Mode bit (only when the OTG_ARCHITECTURE parameter is set to Internal / External
DMA)

+ AHB Burst Length field (only when the OTG_ARCHITECTURE parameter is set to
Internal/External DMA)

4+ Global Interrupt Mask bit =1

4+ Non-Periodic TxFIFO Empty Level, applicable only when the core is operating in Slave mode
and en_multiple_tx_fifo is not set.

4+ Periodic TXFIFO Empty Level, applicable only when the core is operating in Slave mode and
en_multiple_tx_fifo is not set.

+ TxFIFO Empty Level, applicable only when the core is operating in Slave mode and
en_multiple_tx_fifo is set.

3. Programs the following fields in GUSBCFG register:
+ HNP-Capable bit (only when the OTG_MODE parameter is set to OTG)
4+ SRP-Capable bit (unless the OTG_MODE parameter is set to Device Only)

+ ULPI DDR Selection bit (only when the OTG_HSPHY_INTERFACE parameter is selected for
ULPI)

4+ External HS PHY or Internal FS Serial PHY Selection bit (unless “None” is selected for the
OTG_FSPHY_INTERFACE parameter)

4+ ULPI or UTMI+ Selection bit (unless “None” is selected for the OTG_HSPHY_INTERFACE
parameter)

4+ PHY Interface bit (only when the OTG_HSPHY_INTERFACE parameter is selected for UTMI+
or ULPI)

+ HS/FS Timeout Calibration field
4+ USB Turnaround Time field
4+ If LPM support is enabled, sets LPM Capable bit.
4. Enables the following interrupts in the GINTMSK register:
Mode Mismatch interrupt
OTG interrupt
RxFIFO Non-Empty interrupt
Resume/Remote Wakeup Detected interrupt

Connector ID Status Change interrupt

+ 4+ e e

Disconnect interrupt

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

4+ Suspend interrupt

5. Depending on the core’s OTG capabilities, enables the following interrupts in the GINTMSK
register:

4+ Session Request/New Session Detected interrupt (when the core is SRP-capable)
4+ LPM Transaction received interrupt (if LPM support is enabled)
6. Reads the GINTSTS.Current Mode bit to determine whether the core is in Host or Device mode and

performs host or device initialization, accordingly.

3.3.2.2 Device Initialization
1. Programs the following fields in the DCFG register:

+ Device Speed

Nonzero-Length Status OUT Handshake

IN Token Out of Sequence NAK Mode (when non-periodic IN endpoints are supported)
Periodic Frame Interval (when periodic endpoints are supported)

Descriptor DMA Enable field (If DMA and Dedicated TX FIFO modes are used). Set up the Data
FIFO RAM for each of the FIFOs (only if dynamic FIFO sizing is enabled):

4+ Programs the GRXFSIZ register to be able to receive control OUT data and SETUP data. Ata
minimum, this must equal 1 max packet size of control endpoint 0 + 1 DWORD (for the status of
the control OUT data packet) + 10 DWORDs (for SETUP packets).

4+ Programs the GNPTXFSIZ register to be able to transmit control IN data. At a minimum, this
must equal 1 max packet size of control endpoint 0.

.
.
.
.

4+ Program the DPTXFSIZn registers to select the start address of each of the device periodic
transmit FIFOs (only when en_multiple_fifo_en is not set).

4+ Program the DIEPTXFn registers to select the start address of each of the device transmit FIFOs
(only when en_multiple_fifo_en is set).

2. Enable the following interrupts in the GINTMSK register:

Early Suspend interrupt

USB Reset interrupt

Enumeration Done interrupt

End of Periodic Frame interrupt

IN Token Received interrupt

Endpoint Mismatch interrupt when en_multiple_fifo_en is not set.
IN Endpoints interrupt

OUT Endpoints interrupt

R IR IR R R AR

Incomplete Isochronous IN Transfer interrupt
4+ Incomplete Isochronous OUT Transfer interrupt
3. Program the following fields in the DCFG register.
4+ Ignore Frame Number for PTI mode
4+ Global Continue on BNA

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.3.2.3 Host Initialization
1. Enable the following interrupts in the GINTMSK register:
4+ SOF interrupt (not in Descriptor DMA mode)
4+ Port interrupt
4+ Host Channels interrupt
Program the HCFG register to select Full-Speed or High-Speed host operation.
Set up the Data FIFO RAM for each of the FIFOs (only when dynamic FIFO sizing is enabled):
4+ Program the GRXFSIZE register to select the size of the Receive FIFO.

4+ Program the GNPTXFSIZE register to select the size and the start address of the Non-Periodic
Transmit FIFO for non-periodic transactions.

4+ Program the HPTXFSIZ register to select the size and start address of the Host Periodic Transmit
FIFO for periodic transactions.

4. Set HPRTO.PrtPwr to 1'bl. This drives VBUS on the USB.

The remaining initialization occurs in the interrupt handler for the HPRTO0.PrtConnDet and
HPRTO.PrtEnChng interrupts.

4+ HPRTO0.PrtConnDet is asserted when a device is connected to the host port. The interrupt
handler issues a reset on the port.

4+ HPRTO.PrtEnChng is asserted when the host port is enabled after the reset sequence. The
interrupt handler reads HPRTO.PrtSpd to get the speed of the device. When the device is
operating at full speed or low speed and FS/LS Low Power mode is enabled, the
HCFG.FSLSPclkSel bit is set to select the PHY frequency. When the PHY clock frequency has
been changed for power savings, another reset is issued on the port.

See “Port Interrupt” for more detail on the Port Interrupt handler.

3.4 Device Operations

Sections 3.4.1-3.4.2 describe the CIL functions that support managing the DWC_otg controller in Device
mode.

3.4.1 Global Device Operations

The following functions apply to the device as a whole. They are not specific to a particular endpoint.

3.41.1 The dwc_otg_read_setup_packet Function

The dwc_otg_read_setup_packet function reads a SETUP packet (2 DWORDs) from the RxFIFO into the
destination buffer. This function is called from the RxFIFO Non-Empty (RxFLvl) Interrupt routine (see
page 73) when a SETUP packet has been received in Slave mode.

void dwc_otg read setup packet (dwc _otg core if t *core if,

const uint32 t *dest)

3.41.2 The dwc_otg_get_frame_number Function

The dwc_otg_get_frame_number function gets the current USB frame number, which is the frame number
from the last SOF packet.

uint32 t dwc otg get frame number (dwc_otg core if t *core if)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer

3.41.3 The dwc_otg_wakeup Function

The dwc_otg_wakeup function starts a USB protocol session, when no session is in progress. When a
session is already in progress, but the device is suspended, remote wakeup signaling is started.

void dwc_otg wakeup (dwc otg core if t *core if)

3414 The dwc_otg_dump_dev_registers Function
The dwc_otg_dump_dev_registers function reads and displays the device registers.

void dwc_otg dump dev registers(dwc otg core if t *core if)

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.4.2 Endpoint Operations

The following functions are used to manage endpoint operations.

3.4.21 The dwc_otg_ep0_activate Function

The dwc_otg_ep0_activate function enables endpoint 0 OUT to receive SETUP packets and configures
endpoint 0 IN for transmitting packets. It is normally called when the Enumeration Done interrupt occurs.

void dwc_otg epO activate(dwc otg core if *core if, dwc_ep t *ep)
4+ Read the DSTS register to determine the device’s enumeration speed.

4+ Program the Max Packet Size field in the DIEPCTLO register. This step configures control
endpoint 0. The max packet size for a control endpoint depends on the device’s enumeration
speed.

4+ Program the DOEPCTLO register to enable control OUT endpoint 0; to receive a SETUP packet:
DOEPCTLO.Endpoint Enable = 1.

4+ Clear the global non-periodic IN NAK.

3.4.2.2 The dwc_otg_ep0_start_transfer Function

The dwc_otg_ep0_start_transfer function sets up an endpoint 0 control transfer request and starts the
transfer.

void dwc_otg epO start transfer(dwc otg core if t *core if, dwc_ep t *ep)
% For IN transfers, packets are loaded into the appropriate TXFIFO in the TxFIFO Empty ISR.
% For OUT transfers, packets are unloaded from the RXxFIFO in the Rx Status Queue ISR.

IN Transfers:
1. Check for room in the Tx Status Queue. When full, the request is started later in the IN endpoint ISR.
2. Write the transfer size and packet count to the DIEPTSIZ0 register.

@ Note The DIEPCTLO/DOEPCTLO registers only have one bit for the packet count.

If Buffer DMA is enabled, write the address of the data in the DIEPDMADO register.

If Descriptor DMA is enabled, setup the Descriptor DMA, write the Descriptor address in the
DIEPDMADO register.

Enable the EP by setting the enable and clear NAK bits in the DIEPCTLO register.

If DMA is NOT enabled, enable the nptxempty interrupt if en_multiple_tx_fifo is not set, and EP0 Tx
FIFO empty interrupt if it is set, so the data will be loaded into the TxFIFO.

OUT Transfers:
1. Write the transfer size and packet count to the DOEPTSIZO0 register.
2. If Buffer DMA is enabled, write the address of the data in the DOEPDMAQO register.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer

3. If Descriptor DMA is enabled, setup the Descriptor DMA, write the Descriptor address into
DOEPDMAQO register.

4. Enable the EP by setting the enable and clear NAK bits in the DOEPCTLO register.

3.4.23 The dwc_otg_ep0_continue_transfer Function

The dwc_otg_ep0_continue_transfer function continues control IN transfers started by The
dwc_otg_ep0_start_transfer Function (above), when the transfer does not fit in a single packet.

l& Note The DIEPCTLO/DOEPCTLO registers only have one bit for the packet count.

void dwc_otg epO continue transfer (dwc otg core if t *core if, dwc_ep t *ep)

It does the same IN Transfer actions as shown in The dwc_otg_ep0_start_transfer Function, above.

3424 The dwc_otg_ep_activate Function

The dwc_otg_ep_activate function activates an endpoint. The Device Endpoint Control register for the
endpoint is configured as defined in “Endpoint Structure” on page 38

l& Note dwc_otg_ep_activate is not used for endpoint 0.

void dwc_otg ep activate(dwc_otg core if *core if, dwc ep t *ep)

Program the characteristics of the required endpoint into the following fields of the DIEPCTL# (IN or
IN/OUT endpoints) or DOEPCTLn (OUT or IN/OUT endpoints) register:

< Maximum Packet Size
< USB Active Endpoint =1
< Endpoint Start Data Toggle (For interrupt and bulk endpoints)
< Endpoint Type
< Tx FIFO Number (1 if en_multiple_fifo_en is not set and assigns fifo if en_multiple_fifo_en is set)
< If performing in MPI mode, unmask these interrupts:
+ For OUT EPs

< DOEPEACHMSK|[n].SETUP =1

< DOEPEACHMSK][n].XferCompl =1

< DOEPEACHMSK]n].ahberr =1
4+ For IN EPs

< DIEPEACHMSK][n].epdisable = 1
DIEPEACHMSK][n]. XferCompl = 1
DIEPEACHMSK[n].TimeOut = 1
DIEPEACHMSK][n].epdisable = 1
DIEPEACHMSK][n]. Ahberr =1

TR

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

¢ When en_multiple_fifo_en is not set, Interrupt IN endpoints can be configured as periodic or
@ Note non-periodic endpoints depending on the application. The core treats an IN endpoint as a non-
periodic endpoint when the DIEPCTLN. TxFNum field is set to 0. Otherwise, a separate Periodic
FIFO must be allocated using coreConsultant. The number of this FIFO must be programmed
into the DIEPCTLn.TxFNum field. Configuring an interrupt IN endpoint as a non-periodic
endpoint saves the extra Periodic FIFO area.

¢ When en_multiple_fifo_en is set for all IN endpoints, a separate transmit FIFO must be
allocated

3.4.25 The dwc_otg_ep_deactivate Function

The dwc_otg_ep_deactivate function deactivates an endpoint by clearing the USB Active Endpoint bit in the
Device Endpoint Control register. Also, in MPI mode, this function masks the Endpoint Interrupts. Note
that this function is not used for Endpoint 0. EPO cannot be deactivated.

void dwc_otg ep deactivate(dwc otg core if *core if, dwc ep t *ep)

3.4.2.6 The dwc_otg_ep_start_transfer Function
The dwc_otg_ep_start_transfer function sets up a data transfer for an endpoint and starts the transfer.

For IN transfers, it loads a packet into the appropriate FIFO. When this is a multiple packet transfer, the
additional packets are loaded in the ISR.

For OUT transfers, the packets are unloaded from the RxFIFO in the ISR.

void dwc_otg ep start transfer(dwc _otg core if *core if, dwc_ep t *ep)

IN Transfers:
1. Check for room in the Tx Status Queue. When full, the request will be started later in the IN
endpoint ISR.

Write the transfer size and packet count to the DIEPTSIZ register.
If DMA is enabled, write the address of the data in the DIEPDMA register.

If Descriptor DMA is enabled, set up Descriptor DMA, write the Descriptor address into the
DIEPDMAn register.

Enable the endpoint by setting the Endpoint Enable and Clear NAK bits in the DIEPCTL register.

When DMA is not enabled, enable the nptxempty/txfempty interrupt, so the data is loaded into the
TxFIFO.

OUT Transfers:
1. Writes the transfer size and packet count to the DIEPTSIZ register.
2. If DMA is enabled, write the address of the data in the DIEPDMA register.

3. If Descriptor DMA is enabled, set up Descriptor DMA, write the Descriptor address into the
DOEPDMAn register.

4. Enable the endpoint by setting the Endpoint Enable and Clear NAK bits in the DIEPCTL register.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

3.4.2.7 The dwc_otg_ep_start_zl_transfer Function

The dwc_otg_ep_start_zIl_transfer function initiates zero-length transfer on non-control EPs for transfers
with size divisible to max packet size and with usb_request’s zero field is set to 1

void dwc_otg ep start zl transfer(dwc otg core if t *core if, dwc _ep t *ep)

3.4.2.8 dThe wc_otg_ep_write_packet Function
The dwc_otg_ep_write_packet function writes a packet into the TxFIFO associated with an endpoint.

2

% When en_multiple_tx_fifo is not set for non-periodic endpoints, the Non-Periodic TxFIFO is written.

0,

2

% For periodic endpoints, the Periodic TXFIFO associated with the endpoint is written with all packets
for the next (micro)frame.

o

% Otherwise, for all EPs the Tx FIFO associated with the endpoint is written

void dwc_otg ep write packet (dwc_otg core if *core if, dwc_ep t *ep)

3.4.2.9 The dwc_otg_ep_set_stall Function
Sets the endpoint to STALL.

void dwc_otg ep set stall(dwc _otg core if *core if, dwc _ep t *ep)

3.4.2.10 The dwc_otg_ep_clear_stall Function
Clears the STALL on the endpoint.

void dwc_otg ep clear stall(dwc otg core if *core if, dwc_ep t *ep)

3.4.2.11 The dwc_otg_iso_ep_start_transfer Function
Starts Isochronous transfer.

void dwc_otg iso ep start transfer(dwc otg core if t *core if, dwc_ep t *ep)

3.4.2.12 The dwc_otg_iso_ep_start_buf_transfer Function

Initializes Isochronous transfer per each data processing interval between gadget and PCD (PTI
enhancement mode).

void dwc_otg iso ep start buf transfer(dwc otg core if t *core if, dwc_ep t *ep)

3.4.2.13 The dwc_otg_iso_ep_start_ddma_transfer Function

Initializes Isochronous transfer per each data processing interval between gadget and PCD (Descriptor
DMA mode).

void dwc_otg iso ep start ddma transfer(dwc _otg core if t *core if, dwc _ep t *dwc_ep)

3.4.2.14 The dwc_otg_iso_ep_start_frm_transfer Function
Initializes Isochronous transfer per each (micro)frame.

void dwc_otg iso ep start buf transfer(dwc otg core if t *core if, dwc_ep t *ep)

3.4.2.15 The dwc_otg_iso_ep_stop_transfer Function
Stops Isochronous transfer.

void dwc_otg iso ep stop transfer(dwc _otg core if t *core if, dwc _ep t *ep)

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.5 Host Operations

Sections 3.5.1-3.5.2 describe the externally visible CIL functions that support managing the DWC_otg
controller in Host mode.

3.5.1 Global Host Operations

The following function applies to the host as a whole. It is not specific to a particular host channel.

3.5.1.1 The dwec_otg_dump_host_registers Function
The dwc_otg_dump_host_registers function reads and displays the host registers.

void dwc_otg dump host registers(dwc _otg core if t *core if)

3.5.2 Host Channel Operations

The following functions manage host channel operations.

3.5.2.1 The dwc_otg_hc_init Function
The dwc_otg_hc_init function prepares a host channel for transferring packets to or from a specific
endpoint.
void dwc_otg hc init (dwc_otg core if *core if, dwc _hc t *hc)
1. Program the HAINTMSK register to enable the selected channel’s interrupts.

2. Program the HCINTMSK register to enable the transaction-related interrupts of interest in the Host
Channel Interrupt register.

3. Program the selected channel’s HCCHAR® register with the device’s endpoint characteristics, such
as type, speed, direction, and so forth.

4. For split transactions, program the HCSPLTn register of the selected channel with the split
characteristics (Do Complete Split, Transaction Position, Hub Address, Port Address).

3.5.2.2 The dwc_otg_hc_halt Function

The dwc_otg_hc_halt function attempts to halt a host channel. It should only be called in Slave mode or to
abort a transfer in either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
controller halts the channel when the transfer is complete or a condition occurs that requires application
intervention.

void dwc_otg hc halt (dwc_otg core if *core if, dwc hc t *hc

int halt status)
In Slave mode, this function checks for a free request queue entry, then sets the Channel Enable and
Channel Disable bits of the Host Channel Characteristics register (HCHAR#) of the specified channel to
initiate the halt. When there is no free request queue entry, this function sets only the Channel Disable bit of
the HCCHARn register to flush requests for this channel. In the latter case, this function sets a flag to
indicate that the host channel must be halted when a request queue slot is open.

In DMA mode, this function always sets the Channel Enable and Channel Disable bits of the HCCHARn
register. The controller ensures there is space in the request queue before submitting the halt request.

Some time may elapse before the core flushes any posted requests for this host channel and halts. The
Channel Halted interrupt handler completes the deactivation of the host channel. See “Channel Halted” for
a description of what happens when the Channel Halted interrupt occurs.

If the host channel is not active when this function is called, no action is taken.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

3.5.2.3 The dwc_otg_hc_start_transfer Function

The dwc_otg_hc_start_transfer function sets up a data transfer for a host channel and starts the transfer. It
may be called in either Slave mode or Buffer DMA mode. In Slave mode, the caller must ensure that there is
sufficient space in the Request Queue and TxFIFO.

void dwc_otg hc start transfer(dwc _otg core if *core if, dwc_hc t *hc)

For an OUT transfer in Slave mode, it loads a data packet into the appropriate FIFO. When necessary,
additional data packets are loaded in the Host ISR.

For an IN transfer in Slave mode, a data packet is requested. The data packets are unloaded from the
RXFIFO in the Host ISR. When necessary, additional packets are requested in the Host ISR.

For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ register, along with a packet count
of 1, and the channel is enabled. This causes a single PING transaction to occur. Other fields in HCTSIZ are
simply set to 0, because no data transfer occurs in this case.

For a PING transfer in Buffer DMA mode, the HCTSIZ register is initialized with all the information
required to perform the subsequent data transfer. In addition, the Do Ping bit is set in the HCTSIZ register.
In this case, the controller performs the entire PING protocol, then starts the data transfer.

For starting transfers other than a PING transfer in Slave mode, this function performs the following steps:

1. For a periodic transfer, programs the Odd Frame bit of the HCCHARn register to select the
(micro)frame for the transfer.

2. Programs the HCTSIZn register of the selected channel with the total transfer size in bytes and the
expected number of packets, including short packets. It also programs the PID field with the initial
data PID (to be used on the first OUT transaction or expected from the first IN transaction).

3. For split transactions, sets the Split Enable bit of the selected channel’s HCSPLTn register.

Programs the HCDMAm register of the selected channel with the buffer start address (applicable
only for the Internal DMA mode).

5. Sets the Channel Enable bit of HCCHAR# to 1. For an IN transfer, this allows the controller to start
the USB transaction.

6. For an OUT transfer in Slave mode, loads one data packet into the appropriate TxFIFO. After this
data packet is loaded, the controller can start the USB transaction.

3.5.24 The dwc_otg_hc_continue_transfer Function

The dwc_otg_hc_continue_transfer function continues a data transfer that was started by a previous call to
The dwc_otg_hc_start_transfer Function. The caller must ensure there is sufficient space in the request
queue and TxFIFO. This function must only be called in Slave mode. In DMA mode, the controller acts
autonomously to complete transfers programmed to a host channel.

int dwc_otg hc continue transfer (dwc otg core if t * core if, dwc_hc t * hc)

For an OUT transfer, a new data packet is loaded into the appropriate FIFO when any data remains to be
queued. For an IN transfer, another data packet is always requested. For the SETUP phase of a control
transfer, this function does nothing.

This function returns 1 when a new request is queued, 0 when no more requests are required for this
transfer.

3.5.2.5 The dwc_otg_hc_start_transfer_ddma Function

The dwc_otg_hc_start_transfer_ddma function does the setup for a data transfer for a host channel in
Descriptor DMA mode and starts the transfer. The descriptor list for this channel must be initialized before

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

calling this function. For Interrupt and Isochronous transfers, the FrameList must also be initialized before
starting the transfer. This function must be called only in Descriptor DMA mode.

void dwc_otg hc start transfer ddma(dwc _otg core if *core if, dwc _hc t *hc)
For starting transfers in Descriptor DMA mode, this function performs the following steps:

1. Programs the PID field of the HCTSIZn register for the selected channel with the initial data PID (to
be used on the first OUT transaction or expected from the first IN transaction).

2. For a PING transfer, sets the Do Ping bit in the HCTSIZ register. In this case, the controller performs
the entire PING protocol, then starts the data transfer.

3. Programs the NTD field of the HCTSIZn register with the number of transfer descriptors. For Bulk,
Control and Interrupt transfers the actual number of descriptors is programmed. For Isochronous
transfers, NTD is set to maximum allowed value, which depends on the speed of the connected
device.

4. Programs the SCHED_INFO field of the HCTSIZn register with the scheduling bitmap for Interrupt
and Isochronous transfers. For full-speed, the scheduling bitmap is always Oxff

Programs the HCDMAn register of the selected channel with the descriptor list starting address.
Sets the “Channel Enable” bit of HCCHARn to 1.

3.5.2.6 The dwc_otg_hc_write_packet Function

The dwc_otg_hc_write_packet function writes a packet into the TxFIFO associated with the Host Channel.
For a channel associated with a non-periodic endpoint, this function writes to the Non-Periodic TxFIFO. For
a channel associated with a periodic endpoint, this function writes to the Periodic TXFIFO. This function
should only be called in Slave mode.

void dwc_otg hc write packet (dwc otg core if *core if, dwc_hc t *hc)

3.5.2.7 The dwec_otg_hc_cleanup Function

The dwc_otg_hc_cleanup function clears the transfer state for a host channel. It is called after a transfer is
done and the host channel is being released.

void dwc_otg hc cleanup(dwc otg core if t * core if, dwc hc t * hc)

Clear channel interrupt enables and any unhandled channel interrupt conditions.

3.6 Common Operations

The following operations describe the CIL functions that support managing the DWC_otg controller in
either Device or Host mode.

3.6.1 The dwc_otg_mode Function
The dwc_otg_mode function returns the mode of the operation (Host or Device).

//returns 0 - Device Mode, 1 - Host Mode
uint32 t dwc_otg mode (dwc otg core if t *core if)

uint8 t dwc_otg is device mode (dwc_otg core if t *core if)
uint8 t dwc _otg is host mode (dwc otg core if t *core if)

3.6.2 The dwc_otg_read_packet Function
The dwc_otg_read_packet function reads a packet from the RxFIFO into the destination buffer.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

To read SETUP data, use The dwc_otg_read_setup_packet Function.

dwc_otg read packet (dwc_otg core if t *core if,
const uint8 t *dest, const uintlé t bytes)

3.6.3 The dwc_otg_dump_global_registers Function
The dwc_otg_dump_global_registers function reads and displays the global registers.

void dwc_otg dump global registers(dwc otg core if t *core if)

3.6.4 The dwc_otg_enable_common_interrupts Function

The dwc_otg_enable_common_interrupts function initializes the common interrupts, used in both Device
and Host modes.

void dwc_otg enable common interrupts(dwc_otg core if t * core if)

3.6.5 The dwc_otg_enable_device_interrupts Function
The dwc_otg_enable_device_interrupts function enables the Device mode interrupts.

void dwc_otg enable device interrupts(dwc _otg core if t * core if)

3.6.6 The dwc_otg_enable_global_interrupts Function

The dwc_otg_enable_global_interrupts function enables the controller's Global interrupt in the Core AHB
Configuration register (GAHBCFG).

void dwc_otg enable global interrupts(
dwc_otg core if t * core if)
3.6.7 The dwc_otg_disable_global_interrupts Function

The dwc_otg_disable_global_interrupts function disables the controller's Global interrupt in the Core AHB
Configuration register (GAHBCEFG).

void dwc_otg disable global interrupts(
dwc_otg core if t * core if)
3.6.8 The dwc_otg_disable_host_interrupts Function

The dwc_otg_disable_host_interrupts function disables the Host mode interrupts.

void dwc_otg enable host interrupts(dwc otg core if t * core if)

3.7 Register Access

Sections 3.7.1-3.7.8 describe the CIL functions that support access to the DWC_otg registers. These functions
may be used in either Device or Host mode.

3.7.1 The dwc_otg_read_core_intr Function

The dwc_otg_read_core_intr function returns the contents of the Core Interrupt register (GINTSTS), masked
by the contents of the Core Interrupt Mask register (GINTMSK).

uint32 t dwc otg read core intr(dwc otg core if t *core if)

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

3.7.2 The dwc_otg_read_otg_intr Function
The dwc_otg_read_otg_intr function reads the OTG Interrupt register (GOTGINT).

uint32 t dwc otg read otg intr(dwc_otg core if t *core if)

3.7.3 The dwc_otg_read_dev_all_in_ep_intr Function

The dwc_otg_read_dev_all_in_ep_intr function reads the Device All Endpoints Interrupt register (DAINT)
and returns the IN endpoint interrupt bits masked by the contents of the Device All Endpoints Interrupt
Mask register (DAINTMSK) for non-MPI mode, or Device Each Endpoints Interrupt Mask register
(DEACHINTMSK) for MPI mode.

dwc_otg read dev_all in ep intr(dwc otg core if t *core if)

3.74 The dwc_otg_read_dev_all_out_ep_intr Function

The dwc_otg_read_dev_all_out_ep_intr function reads the Device All Endpoints Interrupt register (DAINT)
and returns the OUT endpoint interrupt bits masked by the contents of the Device All Endpoints Interrupt
Mask register (DAINTMSK) for non-MPI mode, or Device Each Endpoints Interrupt Mask register
(DEACHINTMSK) for MPI mode.

dwc_otg read dev_all out ep intr(dwc_otg core if t *core if)

3.75 The dwc_otg_read_dev_in_ep_intr Function

The dwc_otg_read_dev_in_ep_intr function returns the contents of the Device IN Endpoint Common
Interrupt register (DIEPINT#7) masked by the contents of the Device In Endpoint-n Interrupt Mask register
(DIEPMSK) for non-MPI mode, or Device Each In Endpoints Interrupt Mask register
(DIEPEACHINTMSKn) for MPI mode.

uint32 t dwc otg read dev _in ep intr(dwc_otg core if t *core if,
dwc_ep t *ep)
3.7.6 The dwc_otg_read_dev_out_ep_intr Function

The dwc_otg_read_dev_out_ep_intr function returns the contents of the Device OUT Endpoint Common
Interrupt register (DOEPINT#) masked by the contents of the Device Out Endpoint-n Interrupt Mask
register (DOEPMSK) for non-MPI mode, or Device Each Out Endpoints Interrupt Mask register
(DOEPEACHINTMSKn) for MPI mode. For PTT mode, this function also returns PktDrpSts bit value.

uint32 t dwc otg read dev out ep intr(dwc otg core if t *core if,
dwc_ep t *ep)
3.7.7 The dwc_otg_read_host_all_channels_intr Function
The dwc_otg_read_host_all_channels_intr function reads the Host All Channels Interrupt register (HAINT).

uint32 t dwc_otg read host all channels intr(dwc otg core if t *core if,)

3.7.8 The dwc_otg_read_host_channel_intr Function

The dwc_otg_read_host_channel_intr function reads the Host Channel Interrupt register for a given host
channel (HCINTn).

uint32 t dwc otg read host channel intr(dwc_otg core if t *core if,

dwc_hc_t *hc)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Core Interface Layer [|

3.8 Common Interrupt Service Routine
Sections 3.8.1-3.8.7 describe the operations performed for each interrupt the CIL handles.

3.8.1 Mode Mismatch Interrupt
The dwc_otg_mode_mismatch_intr function logs a debug message:
“WARNING: Mode Mismatch Interrupt: currently in <device/host> mode.”

int32 t dwc_otg mode mismatch intr(dwc otg core if t *core if)

3.8.2 OTG Interrupt

The dwc_otg_handle_otg_intr function services OTG interrupts. It reads the OTG Interrupt register
(GOTGINT) to determine which interrupt has occurred.

int32 t dwc_otg handle otg intr(dwc _otg core if t *core if)

3.8.3 USB Suspend Interrupt

The dwc_otg_handle_usb_suspend_intr function indicate that the Suspend state has been detected on the
USB. For HNP the USB Suspend interrupt signals the change from “a_peripherial” to “a_host”. When
power management is enabled, the core is put in Low Power mode.

int32 t dwc_otg handle usb suspend intr(dwc_otg core if t * core if)

3.84 Connector ID Status Change Interrupt

The dwc_otg_handle_conn_id_status_change_intr function indicates that the cable has been inserted or
removed from the connector. For OTG this may be an A-cable or a B-connector. The OTG Interrupt Register
(GOTCTL) is read to determine whether this is a Device to Host mode transition or a Host mode to Device
mode transition.

int32 t dwc_otg handle conn id status_change intxr(
dwc_otg core if t *core if)

3.85 New Session Detected Interrupt

The dwc_otg_handle_session_req_intr function is asserted when the core has detected the initiation of
Session Request Protocol on the USB. This indicates that a device is initiating the Session Request Protocol to
request the host to turn on bus power so a new session can begin. The interrupt handler responds by
turning on bus power. When the DWC_otg controller is in Low Power mode, the interrupt handler brings
the controller out of Low Power mode before turning on bus power.

int32 t dwc _otg handle session req intr(dwc_otg core if t *core if)

3.8.6 Disconnect Detected Interrupt

The dwc_otg_hcd_handle_disconnect_intr function indicates that a device has been disconnected from the
root port. The driver sets its internal Connect Status Change flag and clears the Disconnect Detected bit.

int32 t dwc_otg hcd handle disconnect intr(dwc _otg core if t *core if)

If a device has been disconnected, the host software layers above the Host Controller Driver perform the
appropriate cleanup actions.

The hub driver is notified when it reads the root hub’s status via the Status Change endpoint. The hub
driver issues a GetPortStatus command to the root hub to determine that a connect status change has

April 2009 Synopsys, Inc.

[Core Interface Layer Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

occurred and to find the current port connect status. The driver’s Connect Status Change flag is cleared
when the hub driver issues a ClearPortFeature(C_PORT_CONNECTION) command to the host port.

This interrupt also indicates role switching during the Host Negotiation Protocol.

3.8.7 Remote Wakeup Detected Interrupt

The dwc_otg_handle_wakeup_detected_intr function indicates that the DWC_otg controller has detected a
remote wakeup sequence. When the DWC_otg controller is in Low Power mode, the interrupt handler must
bring the controller out of Low Power mode. The controller automatically begins resume signaling. The
interrupt handler schedules a time to stop resume signaling.

int32 t dwc_otg handle wakeup detected intr(dwc_otg core if t *core if)

3.8.8 LPM Transaction Received Interrupt

This interrupt indicates that host has sent LPM Extended transaction and device has responded with an
ACK handshake. For the host mode DWC_otg core issues this interrupt only for local device.

int32 t dwc _otg handle lpm intr(dwc_otg core if t *core if)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

4

Peripheral Controller Driver

4.1 Peripheral Controller Driver Overview

The Peripheral Controller Driver (PCD) is responsible for translating requests from the Function Driver into
the appropriate actions on the DWC_otg controller. The PCD isolates the Function Driver from the specifics
of the controller by providing an API to the Function Driver. This API may vary between operating systems,
but it remains constant within a given OS. “Function Driver Interface” describes this API for supported
operating systems.

A USB device responds to commands issued from the host. “Standard USB Command Processing” on
page 72 describes the handling of standard USB commands within the DWC_otg software environment.

An important PCD function is managing interrupts generated by the DWC_otg controller. The behavior of
each DWC_otg Device mode interrupt is described in “Function Driver Interface” on page 63

4.2 Function Driver Interface

This section describes the API that the PCD’s OS Wrapper layer presents to the Function Driver, which is
operating system-dependent. The PCD OS Wrapper layer acts as an intermediate layer between the
Function Driver and the PCD core, translating Function Driver requests into PCD core function calls. The
OS Wrapper layer is currently implemented only for Linux.

4.2.1 Linux Gadget API

The Peripheral Controller Driver for Linux implements the Gadget AP]I, so that the existing gadget drivers
can be used (Gadget Driver is the Linux term for a function driver.)

The Linux Gadget APl is defined in the header file, linux/usb_gadget.h. The following data structures
define the functions implemented in the PCD to provide the interface. The USB Endpoint Operations API is
defined in the usb_ep_ops structure, and the USB Controller API is defined in the usb_gadget_ops
structure.

/* endpoint-specific parts of the api to the usb controller

* hardware. Unlike the urb model, (de)multiplexing layers are

* not required. (so this api could slash overhead if used on the
* host side...)

* note that device side usb controllers commonly differ in how

* many endpoints they support, as well as their capabilities.

*/

struct usb _ep ops {

int (*enable) (struct usb ep *ep,

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

const struct usb endpoint descriptor *desc);

int (*disable) (struct usb _ep *ep);

struct usb _request *(*alloc_request) (struct usb_ep *ep,
gpf gfp flags);

void (*free request) (struct usb _ep *ep,

struct usb request *req);

void *(*alloc buffer) (struct usb _ep *ep, unsigned bytes,
dma_addr_t *dma, gpf gfp flags);

void (*free buffer) (struct usb _ep *ep, void *buf,
dma_addr_t dma,
unsigned bytes) ;

// NOTE: on 2.6, drivers may also use dma map() and

// dma_sync_single *() to directly manage dma overhead.

int (*queue) (struct usb_ep *ep, struct usb request *req,

gpf gfp flags);
int (*dequeue) (struct usb _ep *ep, struct usb request *req);

int (*set_halt) (struct usb _ep *ep, int value);
int (*fifo_status) (struct usb_ep *ep);
void (*fifo flush) (struct usb_ep *ep);

}i

/* The rest of the api to the controller hardware: device
* operations, which don't involve endpoints (or i/o).

*/
struct usb gadget ops {
int (*get frame) (struct usb _gadget *);
int (*wakeup) (struct usb _gadget *);
int (*set _selfpowered) (struct usb gadget *,

int is selfpowered) ;

int (*vbus_session) (struct usb gadget *, int is_active);
int (*vbus_draw) (struct usb gadget *, unsigned mA) ;
int (*pullup) (struct usb gadget *, int is on);
int (*ioctl) (struct usb gadget *,
unsigned code, unsigned long param) ;
int (*1pm support) (struct usb gadget *);

}i

The gadget API has been extended to implement the gadget/PCD interface for isochronous transfers
differently than other types of transfer. This includes defining several new types: usb_iso_request and
usb_isoc_ep_ops. The gadget API has also been extended with the lpm_support function, adding LPM
support.

The usb_gadget_iso_packet_descriptor structure contains information about each ISO packet after
transmission —if data was transmitted, actual size of transfer, and so forth.

struct usb gadget iso packet descriptor

{

unsigned int offset;
unsigned int length; /* expected length */

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver i

unsigned int actual length;
unsigned int status;

}i

usb_iso_request struct represents an isochronous transfer request information. Once an isochronous
transfer is started, it does not stop until the gadget driver stops it or the device is disconnected. For
isochronous transfers, double buffering is used: while one buffer is being transferred on the USB, the other’s
data is being exchanged between the gadget driver and PCD. Several parameters for isochronous transfer
are set in this structure:

2

< buf_proc_intrvl: Time interval (number of frames) for data exchange, i.e., interval for calling
process_buffer. This variable should be divisible to bInterval (in terms of number of frames, not
power of 2).

< data_per_frame: size of data to be transmitted in regular (micro)frame

< data_pattern_frame: size of data to be transmitted in sync (micro)frame, frame number to start
transfer.

< sync_frame: sync frame number
< start_frame: frame number from which transfer should be started, effective if flags set to 0
< flags:

4+ When set to 0, PCD should start transfer from frame number mentioned in start_frame,

4+ When not 0, and when flag REQ_ISO_ASAP is set, PCD should start transfer as soon as possible
not depending on frame number

< process_buffer: performs data exchange between gadget and PCD, called periodically when
buf_proc_intrvl is expired

buf0, bufl: 2 data buffers

iso_packet_desc0, iso_packet_descl: two isochronous packet descriptor chains, set by the PCD after
transfer is performed, status field is set to:

0,
0‘0

0,
0‘0

4+ 0 when an isochronous packet was transferred normally

+ ENODATA when data was not transferred for any reason

struct usb_iso request {

void *bufo;

void *bufl;
dma_addr_t dmao;

dma_addr_t dmal;

uint32 t buf proc intrvl;
unsigned no_interrupt:1;
unsigned zero:1;

unsigned short not ok:1;
uint32 t sync_frame;
uint32 t data per frame;
uint32 t data_pattern frame;
uint32 t start frame;
uint32 t flags;

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

void (*process_buffer) (struct usb _ep*,
struct usb_iso request*);

void *context;
int status;

struct usb gadget iso packet descriptor *iso packet descO;
struct usb gadget iso packet descriptor *iso packet descl;

}i

Isoc Specific Endpoints operations are defined in usb_isoc_ep_ops. These functions start and stop
isochronous transfers. Once stared by calling iso_ep_start(), isochronous transfers will not stop until
iso_ep_stop() function is called or device is disconnected.

struct usb _isoc ep ops {

struct usb _ep ops ep ops;
int (*iso_ep start) (struct usb _ep*, struct usb iso request*, int);
int (*iso_ep stop) (struct usb ep*, struct usb_ iso request¥*);
struct
usb _iso request* (*alloc iso request) (struct usb ep* ep, int packets,int

gfp flags);
void (*free iso request) (struct usb ep* ep, struct usb iso request

*req) ;
}i
4211 USB Endpoint Operations

Sections 4.2.1.1.1-4.2.1.1.13 describe the behavior of the Gadget API endpoint operations implemented in
the DWC _otg driver software. Detailed descriptions of the generic behavior of each of these functions can
be found in the Linux header file: include/linux/usb_gadget.h.

The Gadget API provides wrapper functions for each function pointer defined in usb_ep_ops. The Gadget
Driver calls the wrapper function, which then calls the underlying PCD function. Sections 4.2.1.1.1-
4.2.1.1.13 are named according to the wrapper functions. Within each section, the corresponding DWC_otg
PCD function name is specified.

API functions not described below are not implemented.

421.1.1 The usb_ep_enable Function

The Gadget Driver calls the usb_ep_enable function for each endpoint to be configured for the current
configuration (SET_CONFIGURATION).

This function
1. initializes the dwc_otg_ep_t data structure (in dwc_otg_pcd.h)
2. allocates DMA Descriptors
3. calls The dwc_otg_ep_activate Function.

int dwc _otg pcd ep enable(struct usb _ep *ep,
const struct usb endpoint descriptor *desc)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver

4.2.1.1.2 The usb_ep_disable Function

The usb_ep_disable function is called when an endpoint is disabled due to a disconnect or change in
configuration. Any pending requests terminate with a status of -ESHUTDOWN.

This function
1. modifies the dwc_otg_ep_t data structure for this endpoint
2. frees DMA Descriptors
3. calls The dwc_otg_ep_deactivate Function.

int dwc_otg pcd ep disable(struct usb_ep *ep)

4.21.1.3 The usb_ep_alloc_request Function
The usb_ep_alloc_request function allocates a request object to use with the specified endpoint.
struct usb request *dwc_otg pcd alloc request (struct usb_ep *ep,
gfp gfp flags)
4.2.1.1.4 The usb_ep_free_request Function
The usb_ep_free_request function frees a request object.

void dwc_otg pcd free request (struct usb ep *ep,
struct usb_request *req)

4.2.1.1.5 The usb_ep_alloc_buffer Function
The usb_ep_alloc_buffer function allocates an I/ O buffer for a transfer to or from the specified endpoint.

void *dwc_otg pcd alloc buffer(struct usb _ep *ep, unsigned bytes,
dma_addr t *dma, gfp gfp_ flags)

4.2.1.1.6 The usb_ep_free_buffer Function
The usb_ep_free_buffer function frees an I/O buffer that was allocated by The usb_ep_alloc_buffer
Function.

void dwc_otg pcd free buffer(struct usb ep *ep, void *buf,
dma addr t dma, unsigned bytes)

4.2.1.1.7 The usb_ep_queue Function
The usb_ep_queue function submits an I/O request to an endpoint.

int dwc_otg pcd ep queue (struct usb _ep *ep,
struct usb request *req, int gfp flags)

N ¢ When the request completes, the request’s completion callback is called to return the request to
l:} ote the driver.

* Any endpoint, except control endpoints, can have multiple requests pending.
¢ Once submitted, a request cannot be examined or modified.

* Each request is turned into one or more packets.

¢ A bulk endpoint can queue any amount of data; the transfer is packetized.

e Zero-length packets are specified with the Request Zero flag.

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

4.2.1.1.8 The usb_ep_dequeue Function
The usb_ep_dequeue function cancels an I/O request from an endpoint.
int dwc _otg pcd ep dequeue (struct usb _ep *ep,

struct usb_request *req)

421.1.9 The usb_ep_set_halt, usb_ep_clear_halt Function
The usb_ep_set_halt function stalls an endpoint.
The usb_ep_clear_halt function clears an endpoint halt and resets its data toggle.

Both of these functions are implemented with the same underlying function. The behavior depends on the
value argument. 1 means set_halt, 0 means clear_halt.

int dwc _otg pcd ep set halt(struct usb _ep *ep, int wvalue)

4.2.1.1.10 The usb_iso_ep_start Function

The usb_iso_ep_start function starts isochronous transfers on an endpoint. PCD periodically calls ISO
request process_iso_buffer function for data exchange between PCD and Gadget

int dwc _otg pcd iso ep start(struct usb ep * ep, struct usb iso request * req, int

_gfp flags)

4.2.1.1.11 The usb_iso_ep_stop Function
The usb_iso_ep_stop function stops isochronous transfers on an endpoint.

int dwc _otg pcd iso ep stop(struct usb ep * ep, struct usb iso request * iso req)

4.2.1.1.12 The usb_alloc_iso_request Function
This function allocates an isochronous request object to use with the specified endpoint.
struct usb iso request *dwc otg pcd alloc iso request (struct usb ep * ep,int
packets,int gfp flags)

4.2.1.1.13 The usb_free_iso_request Function
Stops iso transfers on Endpoint.

void dwc_otg pcd free iso request (struct usb ep * ep, struct usb_iso request *req)

4.2.1.2 Gadget Operations

The following Gadget operations are implemented in the DWC_otg PCD. Functions in the API that are not
described below are not implemented.

The Gadget API provides wrapper functions for each of the function pointers defined in usb_gadget_ops.
The Gadget Driver calls the wrapper function, which then calls the underlying PCD function.The following
gadget operations are named according to the wrapper functions. Within each section, the corresponding
DWC_otg PCD function name is specified.

4.2.1.2.1 The usb_gadget_get_frame Function
The usb_gadget_get_frame function gets the USB frame number of the last SOF.

int dwc_otg pcd get frame(struct usb_gadget *gadget)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver i

4.2.1.2.2 The usb_gadget_wakeup Function

The usb_gadget_wakeup function initiates Session Request Protocol (SRP) to wake the host when no session
is in progress. When a session is already in progress, but the device is suspended, remote wakeup signaling
is started.

int dwc_otg pcd wakeup (struct usb _gadget *gadget)

4.2.1.2.3 The usb_gadget_test_Ipm_support Function
Tests LPM support by underlying PCD.
int dwc _otg pcd test lpm enabled(struct usb gadget *gadget)

4.3 PCD Core API

PCD OS wrapper communicates with PCD Core via PCD Core APIL. The PCD Core APl is defined in the
dwc_otg_pcd_if.h header file.

Almost all the functions require dwc_otg_pcd_t pointer to be passed. This pointer obtained via
dwc_otg_pcd_init function call.

The following data structures are defined in dwc_otg_pcd_if.h header file:

typedef int (*dwc _completion cb t) (dwc _otg pcd t *pcd,
void *ep handle, void *req handle, int32 t status,
uint32 t actual) ;

typedef int (*dwc isoc completion cb t) (dwc otg pcd t *pcd, void
*ep handle, void *req handle, int proc_buf num) ;

typedef int (*dwc_setup cb t) (dwc_otg pcd t *pcd, uint8 t *bytes);

typedef int (*dwc disconnect cb t) (dwc_otg pcd t *pcd) ;

typedef int (*dwc connect cb t) (dwc_otg pcd t *pcd, int speed);

typedef int (*dwc_ suspend cb t) (dwc_otg pcd t *pcd);

typedef int (*dwc_sleep cb t) (dwc_otg pcd t *pcd);

typedef int (*dwc resume cb t) (dwc otg pcd t *pcd);

typedef int (*dwc hnp params changed cb t) (dwc otg pcd t *pcd);

typedef int (*dwc reset cb t) (dwc_otg pcd t *pcd);

struct dwc otg pcd function ops
{
dwc_connect cb t connect;
dwc_disconnect cb t disconnect;
dwc_setup cb t setup;
dwc_completion cb t complete;
dwc_isoc completion cb t isoc complete;
dwc _suspend cb t suspend;
dwc _sleep cb t sleep;
dwc_resume cb_ t resume;
dwc _reset cb t reset;
dwc _hnp params_ changed cb t hnp changed;
}i
The PCD OS wrapper must pass the struct dwc_otg_pcd_function_ops pointer to dwc_otg_pcd_start
function. The PCD core calls a certain callback function whenever the corresponding event occurs.

The PCD core also defines the PCD interrupt handler function, which must be called on every hardware
interrupt.

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

4.3.1 The dwc_otg_pcd_init Function
This function is called to allocate and initialize the PCD core.

extern dwc _otg pcd t *dwc otg pcd init (dwc_otg core if t *core if)

4.3.2 The dwc_otg_pcd_remove Function
This function frees PCD core allocated by the dwc_otg_pcd_init function.

extern void dwc_otg pcd remove (dwc _otg pcd t *pcd)

4.3.3 The dwc_otg_pcd_start Function
This function binds the Function Driver to the PCD core.

extern void dwc_otg pcd start (dwc_otg pcd t *pcd,
const struct dwc otg pcd function ops *fops)

4.3.4 The dwc_otg_pcd_ep_enable Function

This function enables an endpoint in the PCD. The endpoint is described by the ep_desc which has the same
structure as a USB endpoint descriptor. The ep_handle parameter refers to the endpoint from other API
functions and callbacks.

extern int dwc_otg pcd ep enable(dwc _otg pcd t *pcd,
const uint8 t *ep desc, void *ep handle)

4.3.5 The dwc_otg_pcd_ep_disable Function
This function disables the endpoint referenced by ep_handle.

extern int dwc_otg pcd ep disable(dwc_otg pcd t *pcd,
void *ep handle)

4.3.6 The dwc_otg_pcd_ep_queue Function
This function is called to queue a data transfer request onto the endpoint referenced by ep_handle.

extern int dwc_otg pcd ep queue (dwc_otg pcd t *pcd,
void *ep handle, uint8 t *buf, dwc _dma t dma buf,
uint32_ t buflen, int zero, void *req handle,

int atomic alloc)

4.3.7 The dwc_otg_pcd_ep_dequeue Function
This function de-queues the specified data transfer request, which has not been completed yet.

extern int dwc_otg pcd ep dequeue (dwc_otg pcd t *pcd,
void *ep handle, void *reqg handle)

4.3.8 The dwc_otg_pcd_ep_halt Function

This function halts (STALLSs) or clears an endpoint.

extern int dwc_otg pcd ep halt (dwc otg pcd t *pcd, void *ep handle,
int value)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver

4.3.9 The dwc_otg_pcd_handle_intr Function
This function should be called on every hardware interrupt.

extern int32 t dwc_otg pcd handle intr(dwc_otg pcd t *pcd)

4.3.10 The dwc_otg_pcd_get_frame_number Function
This function returns current frame number.

extern int dwc_otg pcd get frame number (dwc otg pcd t *pcd)

4.3.11 The dwc_otg_pcd_iso_ep_start Function
This function starts isochronous transfers on the endpoint referenced by ep_handle.

extern int dwc_otg pcd iso ep start (dwc otg pcd t *pcd,
void *ep handle, uint8 t *buf0, uint8 t *bufl,
dwc_dma_t dma0, dwc _dma t dmal, int sync frame,

int dp frame, int data per frame, int start_ frame,
int buf proc_intrvl, void *req handle,

int atomic alloc)

43.12 dwc_otg_pcd_iso_ep_stop
This function stops isochronous transfers on the endpoint referenced by ep_handle.

extern int dwc_otg pcd iso ep stop(dwc _otg pcd t *pcd,
void *ep handle, void *reqg handle)

4.3.13 The dwc_otg_pcd_get_iso_packet_params Function
This function gets the isochronous packet status.

extern void dwc_otg pcd get iso packet params (dwc otg pcd t *pcd,
void *ep handle, void *iso_req handle, int packet,
int *status, int *actual, int *offset)

4.3.14 The dwc_otg_pcd_get_iso_packet_count Function
This function gets the isochronous packet count.

extern int dwc_otg pcd get iso packet count (dwc _otg pcd t *pcd,
void *ep handle, void *iso _req handle)
4.3.15 The dwc_otg_pcd_wakeup Function

This function starts SRP if no session is in progress. If a session is already in progress, but the device is
suspended, this function initiates remote wakeup signaling.

extern int dwc_otg pcd wakeup (dwc otg pcd t *pcd)

4.3.16 The dwc_otg_pcd_is_lpm_enabled Function
This function returns a 1 if LPM support is enabled; 0 otherwise.

extern int dwc_otg pcd is lpm enabled(dwc _otg pcd t *pcd)

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

4.3.17 The dwc_otg_pcd_get_rmwkup_enable Function
This function returns 1 if remote wakeup is allowed; 0 otherwise.

extern int dwc_otg pcd get rmwkup enable(dwc _otg pcd t *pcd)

4.3.18 The dwc_otg_pcd_initiate_srp Function
This function initiates SRP.

extern void dwc_otg pcd initiate srp(dwc _otg pcd t *pcd)

4.3.19 The dwc_otg_pcd_remote_wakeup Function
This function starts Remote Wakeup signaling.

extern void dwc_otg pcd remote wakeup (dwc _otg pcd t *pcd, int set)

4.3.20 The dwc_otg_pcd_is_dualspeed Function
This function returns a 1 if the device is dual-speed; 0 otherwise.

extern uint32 t dwc_otg pcd is dualspeed(dwc_otg pcd t *pcd)

4.3.21 The dwc_otg_pcd_is_otg Function
This function returns a 1 if the device is OTG; 0 otherwise.

extern uint32 t dwc otg pcd is otg(dwc _otg pcd t *pcd)

4.3.22 hnp_param functions
These functions get HNP parameters.

extern uint32 t get b hnp enable(dwc otg pcd t *pcd)
extern uint32 t get a hnp support (dwc_otg pcd t *pcd)
extern uint32 t get a alt hnp support (dwc_otg pcd t *pcd)

4.4 Standard USB Command Processing

In Linux, USB commands are processed in two places: the PCD and the Gadget Driver (for example, the
File-Backed Storage Gadget Driver).

Table 4-1 USB Commands

Command Driver Description

GET_STATUS PCD Command is processed as defined in Chapter 9 of the Universal Serial
Bus Specification, Revision 2.0.

CLEAR_FEATURE PCD The Device and Endpoint requests are processed, and interface requests
are ignored.

SET_FEATURE PCD and The Device and Endpoint requests are processed by the PCD. Interface

Gadget Driver requests are passed to the Gadget Driver.

SET_ADDRESS PCD Program the Device Configuration register (DCFG) register with the
received device address.

GET_DESCRIPTOR Gadget Driver Return the requested descriptor.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver i

Table 4-1

USB Commands (Continued)

Command Driver Description

SET_DESCRIPTOR Gadget Driver Optional—not implemented by any of the existing Gadget drivers.

SET_CONFIGURATION Gadget Driver Disable all endpoints and enable endpoints for new configuration.

GET_CONFIGURATION Gadget Driver Return the current configuration.

SET_INTERFACE Gadget Driver Disable all endpoints and enable endpoints for new configuration.
GET_INTERFACE Gadget Driver Return the current interface.
SYNC_FRAME Gadget Driver Receives Sync Frame number for Isoc endpoints.

When the SETUP Phase Done interrupt is asserted for a control endpoint, the SETUP transaction bytes are
processed by the PCD. Calling the Gadget Driver’s setup function from the PCD processes the gadget
SETUP commands.

4.5

Device Interrupt Service Routine

The PCD handles device interrupts. Many conditions can cause a device interrupt. When an interrupt
occurs, the device interrupt service routine determines the cause of the interrupt and invokes the
appropriate function to handle it. These interrupt-handling functions are described as follows.

All interrupt registers are processed from LSB to MSB.

4.5.1

Start of Frame Interrupt (SOF)

This function handles Start of Frame (SOF) interrupts. The handler for this interrupt is not implemented.

4.5.2

RxFIFO Non-Empty (RxFLvIl) Interrupt

The dwc_otg_pcd_handle_rx_status_q_level_intr function services the RxFIFO Non-Empty interrupt,
which indicates that there is a least one packet in the RxFIFO. The packets are moved from the FIFO to
memory, where they are processed when the Endpoint Interrupt register (DIEPINT#n/DOEPINT#) indicates
Transfer Completed or SETUP Phase Done. This interrupt is only enabled in Slave mode.

int32 t dwc _otg pcd handle rx status g level intr(dwc _otg pcd t * pcd)

This function repeats the following steps until the Rx Status Queue is empty:

1.
2.
3.

4.5.3

Reads the Receive Status Pop register (GRXSTSP) to get packet info.
When the RxFIFO is empty, clears the interrupt and exit.

When the RxFIFO contains a SETUP packet, calls The dwc_otg_read_setup_packet Function to copy
the SETUP data to the buffer.

When the RxFIFO contains an OUT data packet, calls The dwc_otg_read_packet Function to copy
the data to the destination buffer.

Non-Periodic TXFIFO Empty Interrupt

The dwc_otg_pcd_handle_np_tx_fifo_empty_intr function services Non-Periodic TxFIFO Empty interrupts,
which occur when the Non-Periodic TXFIFO is empty or half-empty. The active request is checked for the
next packet to be loaded into the Non-Periodic TxFIFO.

April 2009

Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

The learning queue is processed to determine the endpoint of the last IN token. The Non-Periodic TxFIFO is
then filled with the data to be transmitted from the endpoint. As many complete packets as will fit are
loaded into the Non-Periodic TxFIFO.

This interrupt is enabled only in Slave mode, when en_multiple_tx_fifo is not set.

int32 t dwc_otg pcd handle np tx fifo empty intr(dwc _otg pcd t * pcd)

45.4 Early Suspend Interrupt

The dwc_otg_pcd_handle_early_suspend_intr function services Early Suspend interrupts, which indicate
that an Early Suspend condition has been detected on the USB. At this time, the interrupt handler simply
clears the interrupt condition and takes no other action.

int32 t dwc_otg pcd handle early suspend intr (dwc_otg pcd t * pcd)

45.5 USB Reset Interrupt

The dwc_otg_pcd_handle_usb_reset_intr function services USB Reset interrupts, which occur when a USB
reset is detected. When the USB Reset interrupt occurs, the device state is set to Default and the endpoint 0
state is set to Idle.

int32 t dwc_otg pcd handle usb reset intr(dwc otg pcd t * pcd)
The interrupt handler performs the following steps:

Clears Remote Wakeup signaling.

Sets the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1).
Flushes the TXFIFO and Learning Queue.

Unmasks the following interrupt bits:

Ll e

For non-MPI mode

DAINTMSK.INEPO =1 (control IN endpoint 0)
DAINTMSK.OUTEPO =1 (control OUT endpoint 0)
DOEPMSK.SETUP = 1

DOEPMSK . XferCompl =1

DOEPMSK.ahberr =1

DOEPMSK .epdisable = 1

DIEPMSK XferCompl =1

DIEPMSK.TimeOut =1

DIEPMSK .epdisable =1

DIEPMSK.Ahberr =1

For MPI mode

DEACHINTMSK.INEPO =1 (Control 0 IN endpoint)
DEACHINTMSK.OUTEPO =1 (Control 0 OUT endpoint)
DOEPEACHMSK[0].SETUP =1
DOEPEACHMSK]0].XferCompl = 1
DOEPEACHMSK][0].ahberr =1
DIEPEACHMSK][0].epdisable = 1

IR R R R A

<>

<>

$ 4 4o o

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver i

DIEPEACHMSK][0].XferCompl =1
DIEPEACHMSK][0].TimeOut = 1
DIEPEACHMSK][0].epdisable = 1
< DIEPEACHMSK]0]. Ahberr =1

5. Resets the Device Address field in Device Configuration Register (DCFG).

s+ 4

6. To receive a SETUP packet, programs the following fields in the endpoint-specific registers for
control OUT endpoint 0:

+ DOEPTSIZ0.SetUpCount = 3 (to receive up to 3 back-to-back SETUP packets)

+ DOEPTSIZ0.Packet Count =1

+ DOEPTSIZEQO.Transfer Size = 24 bytes (to receive up to 3 back-to-back SETUP data packets)
*

In DMA mode, programs the Device OUT Endpoint 0 DMA Address register (DOEPDMADOQ)
with a memory address to store any SETUP data packets received and enable the endpoint

7. Clears the USB Reset interrupt.

At this point, all initialization required to receive SETUP packets is complete, except for enabling the control
0 OUT endpoint.

4.5.6 Enumeration Done Interrupt

The int32_t dwc_otg_pcd_handle_enum_done_intr interrupt indicates that USB speed enumeration has
completed.

int32 t dwc_otg pcd handle enum done intr(dwc otg pcd t * pcd)

The interrupt handler reads the device status register (DSTS) and sets the device speed in the data structure
by performing the following steps:

1. Sets up endpoint 0 to receive SETUP packets by calling dwc_ep0_activate().
2. Sets the EPO state to EPO_IDLE.
3. Sets the speed in the Gadget structure.

45.7 Isochronous OUT Packet Dropped Interrupt

This interrupt indicates that the ISO OUT Packet was dropped due to Rx FIFO full or Rx Status Queue Full.
The handler for this interrupt is not implemented.

int32 t dwc_otg pcd handle isoc_out packet dropped intr
(dwe_otg pcd t * pcd)
45.8 End of Periodic Frame Interrupt

This interrupt indicates the end of the portion of the micro-frame for periodic transactions. The handler for
this interrupt is not implemented.

int32 t dwc_otg pcd handle end periodic frame intr(
dwc_otg pcd t * pcd)

4.5.9 IN Token Received Interrupt

This interrupt indicates that the IN Token Sequence Learning Queue is not empty. This interrupt is
disabled.

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

4.5.10 Endpoint Mismatch Interrupt

The dwc_otg_pcd_handle_ep_mismatch_intr function services Endpoint Mismatch interrupts, which
indicate that the endpoint of the packet on the top of the Non-Periodic TxFIFO does not match endpoint of
the IN token received.

int32 t dwc_otg pcd handle ep mismatch intxr(
dwc_otg pcd t * pcd)

The Device IN Token Queue registers are read to determine the order the IN tokens have been received. The
Non-Periodic TxFIFO is flushed, so it can be reloaded in the order presented in the IN Token Queue.

This interrupt is enabled only when en_multiple_tx_fifo is not set.

4.5.11 IN Endpoint Interrupt
The dwc_otg_pcd_handle_in_ep_intr function indicates that an IN endpoint has a pending interrupt.
int32 t dwc_otg pcd handle in ep intr(dwc_otg pcd t * pcd)
The interrupt handler performs the following steps:
1. Reads the Device All Endpoints Interrupt register (DAINT).
2. Repeats the following for each IN endpoint interrupt bit set (from LSB to MSB):
a. Read the Device Endpoint Interrupt (DIEPINTn) register

b. If “Transfer Complete” call the request complete function.

c. If “Endpoint Disabled” complete the EP disable procedure.

d. If “AHB Error Interrupt” log error.

e. If “Time-out Handshake” log error.

f. If “IN Token Received when TXFIFO Empty” write packet to Tx FIFO.

g. 1f “IN Token EP Mismatch” (disable, this is handled by EP Mismatch Interrupt).
h. If “Tx FIFO Empty” call write_empty_fifo() function.

If “BNA” and Global Continue on BNA is not set, disable EP.
j. If“NAK” perform actions needed.

[y

4512 OUT Endpoint Interrupt

The dwc_otg_pcd_handle_out_ep_intr function services Out Endpoint interrupts, which interrupt indicate
that an OUT endpoint has a pending interrupt.

int32 t dwc _otg pcd handle out ep intr(dwc otg pcd t * pcd)
The interrupt handler performs the following steps:
1. Reads the Device All Endpoint Interrupt register (DAINT).
2. Repeats the following for each OUT endpoint interrupt bit set (from LSB to MSB):
a. Read the Device Endpoint Interrupt (DOEPINTn) register.

b. If “Transfer Complete,” call the Request Complete function (for PTI mode enabled and
PktDrpSts bit is set, call handler for Out Packet Dropped).

c. If “Endpoint Disabled,” complete the EP disable procedure.
d. If “AHB Error Interrupt,” log error.

IIIH!II

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Peripheral Controller Driver i

e. If “Setup Phase Done,” process Setup Packet (See “Standard USB Command Processing” on
page 72).

f. If “BNA,” and Global Continue on BNA is not set, disable EP.

g. If “Status Phase Detected,” IN token for Control Write status phase is received. Enable IN EP for
sending zero-length status packet.

h. If “Babble,” perform actions needed.
i. If“NYET,” perform actions needed.
j. If “NAK,” perform actions needed.

4.5.13 Incomplete Isochronous IN Transfer Interrupt

The dwc_otg_pcd_handle_incomplete_isoc_in_intr function indicates that one of the following conditions
occurred while the device was transmitting an isochronous transaction:

% Corrupted IN token for isochronous endpoint

% Packet not complete in the FIFO
int32 t dwc_otg pcd handle incomplete isoc in intr(dwc _otg pcd t * pcd)

The handler function finds the endpoint asserted by this interrupt, marks the packet as lost, and re-enables
the endpoint for the next packet.

4.5.14 Incomplete Isochronous OUT Transfer Interrupt

This interrupt indicates that the core has dropped an Isochronous OUT packet. The following conditions
can be the cause:

< FIFO Full, the entire packet would not fit in the FIFO.

% CRC Error

% Corrupted Token

int32 t dwc_otg pcd handle incomplete isoc out intr(dwc_otg pcd t * pcd)

The handler function finds the endpoint asserted by this interrupt, marks the packet as lost, and re-enables
the endpoint for the next packet.

April 2009 Synopsys, Inc.

[Peripheral Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

S

Host Controller Driver

5.1 Host Controller Driver Overview
The Host Controller Driver (HCD) translates requests from the USB Driver into appropriate actions on the
DWC_otg controller. The HCD isolates the USBD from the specifics of the controller by providing an API to
the USBD. This API may vary between operating systems, but it remains constant within a given OS. “USB
Driver Interface” on page 79 describes this API for supported operating systems.

An important function of the HCD is managing interrupts generated by the DWC_otg controller. The
behavior of each DWC_otg Host mode interrupt is described in “Host Interrupt Service Routine” on page 92

5.2 USB Driver Interface

This section describes the API that the HCD’s OS Wrapper layer presents to the USBD for each supported
operating system. Currently, Linux is the only OS supported. The HCD OS wrapper acts as an intermediate
layer between the USBD and HCD core.

5.2.1 Linux hc_driver API

The Host Controller Driver for Linux implements the hc_driver API This APl is defined in the header file
drivers/usb/core/hcd.h in the 2.6.20.1 Linux source tree. The hc_driver data structure below defines the
interface.

This interface is relatively new to Linux. It performs only those actions that require detection of controller
hardware differences. All other host controller code is contained within the common kernel code in
drivers/usb/core/hcd.c.

struct hc_driver {
const char*description; /* "ehci-hcd" etc */

/* irgq handler */
irgreturn t (*irqg) (struct usb hcd *hcd, struct pt regs *regs);

int flags;
#define HCD MEMORY 0x0001 /* HC regs use memory
(else I/0) */
#define HCD USB11 0x0010 /* USB 1.1 */
#define HCD_USB2 0x0020 /* USB 2.0 */

/* called to init HCD and root hub */

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide
int (*reset) (struct usb_hcd *hcd) ;
int (*start) (struct usb_hcd *hcd) ;

/* NOTE: these suspend/resume calls relate to the HC as
* a whole, not just the root hub; they're for bus glue.

*/
/* called after all devices were suspended */
int (*suspend) (struct usb _hcd *hcd, u32 state);

/* called before any devices get resumed */
int (*resume) (struct usb_hcd *hcd);

/* cleanly make HCD stop writing memory and doing I/O */
void (*stop) (struct usb hcd *hcd) ;

/* return current frame number */
int (*get frame number) (struct usb hcd *hcd) ;

/* memory lifecycle */
struct usb hcd *(*hcd alloc) (void);
void (*hcd free) (struct usb_hcd *hcd) ;

/* manage i/o requests, device state */

int (*urb_enqueue) (struct usb _hcd *hcd, struct urb *urb,
int mem flags) ;
int (*urb_dequeue) (struct usb _hcd *hcd, struct urb *urb) ;

/* hw synch, freeing endpoint resources that urb dequeue can't */
void (*endpoint disable) (struct usb hcd *hcd,
struct hcd dev *dev, int bEndpointAddress) ;

/* root hub support */
int (*hub_status_data) (struct usb _hcd *hecd, char *buf);
int (*hub_control) (struct usb_hcd *hcd,

ulé typeReq, ulé wValue, ulé6 wIndex,

char *buf, ulé wLength) ;

int (*hub_suspend) (struct usb_hcd *);
int (*hub_resume) (struct usb hcd *);
int (*start port reset) (struct usb hcd *,

unsigned port num) ;
}i
The following sections describe the behavior of the hc_driver API functions implemented in the DWC_otg
driver software. API functions not described below are not implemented.

5.2.1.1 The start Function

The start function initializes the DWC_otg controller and its root hub to prepare for Host mode operation. It
then activates the root port. This function returns 0 on success and a negative error code on failure.

int dwc_otg hecd start (struct usb hecd *hcd)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

5.2.1.2 The stop Function

The stop function halts DWC_otg Host mode operations cleanly. USB transfers and memory reads and
writes are stopped.

void dwc_otg hcd stop(struct usb hecd *hcd)

5.2.1.3 The get_frame_number Function
The get_frame_number function returns the current frame number.

int dwc_otg hcd get frame number (struct usb hcd *hcd)

5.2.1.4 The hcd_alloc Function

The hed_alloc function allocates a dwc_otg_hcd structure, which contains a struct usb_hcd field, and
returns the struct usb_hcd element for use by the common kernel code.

struct usb hcd *dwc_otg hcd alloc()

The dwc_otg_hcd structure contains fields needed by the DWC_otg HCD functions described in this
section. One of these fields is the usb_hcd structure common to all host controller drivers. DWC_otg HCD
functions receive a usb_hcd argument and convert it to a dwc_otg_hcd structure to access DWC_otg-
specific fields.

5.21.5 The hcd_free Function
The hed_free function frees the dwc_otg_hcd structure that contains the struct usb_hcd field.

void dwc_otg hcd free(struct usb_hcd *hcd)

5.2.1.6 The urb_enqueue Function

The urb_enqueue function starts processing a USB transfer request specified by a USB Request Block (URB).
mem_flags indicates the type of memory allocation to use while processing this URB.

int dwc_otg hecd urb enqueue (struct usb _hcd *hcd, struct urb *urb,
int mem flags)

See /usr/include/linux/usb.h in your Linux distribution for detailed information on the URB fields. See
the description of usb_submit_urb in .../drivers/usb/core/urb.c in your Linux distribution for a full
description of URB processing. Some key points of request processing are listed below:

< When the request completes, the completion callback specified in the URB is called asynchronously.
The status of the request is stored in the URB.

< URBs may be submitted to an endpoint before previous URBs complete.

% In general, a device driver should not access an URB after it has been submitted until the complete
function is called. Status fields for isochronous and interrupt requests can be accessed immediately
after an URB is submitted.

This function's main role is to schedule the transfer by adding it to a list of transfers for the specified
endpoint. In addition to separating transfers by endpoint, the scheduler separates transfers by type —
control, bulk, isochronous, and interrupt.

Processing the transfer lists and executing USB transfers is the responsibility of the host interrupt handler
routines. These functions are responsible for sending packets, processing received packets, and handling
transfer completions or transfer errors. See “Host Interrupt Service Routine” on page 92 for more
information on the host interrupt handler routines.

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.2.1.7 The urb_dequeue Function

The urb_dequeue function aborts or cancels a USB transfer request. urb_dequeue always returns 0 to
indicate success.

int dwc_otg hcd urb dequeue (struct usb _hcd *hcd, struct urb *urb)

This function also starts the process of removing the URB from the endpoint transfer list. The transfer may
already be in progress, so the complete function for the URB is called when cancellation is finished.

5.2.1.8 The endpoint_disable Function

The endpoint_disable function frees the resources in the DWC_otg controller related to a given endpoint,
and clears state in the HCD related to the endpoint. Any URBs for the endpoint must already be dequeued.

void dwc_otg hcd endpoint disable(struct usb _hcd *hcd
struct hcd dev *dev, int bEndpointAddress)

This function may be called, for example, when a SET_CONFIGURATION or SET_INTERFACE command
is processed. Any endpoint state in the HCD (such as endpoint type, max packet size, data toggle state, and
so forth) is cleared. When a host channel is delegated to this endpoint, it is released.

5.2.1.9 The irq Function

The irq function handles Host mode interrupts for the DWC_otg controller, and returns IRQ_NONE when
there is no interrupt to handle. The IRQ function returns IRQ_HANDLED when there is a valid interrupt.

irgreturn t dwc_otg hcd irg(struct usb _hcd *hcd, struct pt regs *regs)

This method is called when a DWC_otg Host mode interrupt occurs. See “Host Interrupt Service Routine”
for more information on Host mode interrupt handling.

5.2.1.10 The hub_status_data Function

The hub_status_data function creates a Status Change bitmap for the root hub and root port. The bitmap is
returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1 is the status change indicator for
the single root port. The function returns 1 when either change indicator is 1; otherwise, it returns 0.

int dwc_otg hcd hub status data(struct usb_hcd *hcd, char *buf)
The change bit for the root hub is the logical OR of the following bits:

o

% Local Power Status Change

o

% Overcurrent Change
Currently, both of these bits are always 0, so the change bit for the root hub is always 0.
The change bit for the root port is the logical OR of the following bits:

0,
0‘0

Connect Status Change
Port Enable/Disable Change
Suspend Change

0, 0,
0‘0 0‘0

0,
0‘0

Overcurrent Indicator Change

0,
0‘0

Reset Change

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

5.2.1.11 The hub_control Function
The hub_control function handles hub class-specific requests.

int dwc_otg hed hub control (struct usb _hcd *hcd, ulé typeReq,

ulé wValue, ulé wIndex, char *buf, ulé wLength)

Table 5-1 shows the requests handled by this function. See Section 11.24.2 of the Universal Serial Bus
Specification, Revision 2.0 for more detail on these requests.

Table 5-1 Root Hub Class-Specific Requests

Request

Description

ClearHubFeature

Supported Features

C_HUB_LOCAL_POWER

No action required. Root Hub Local Power Source is always 0 (good). The Local Power
Status Change bit is also always 0 (no change).

C_HUB_OVER_CURRENT

No action required. The Hub Overcurrent bit is always 0 because the hub reports
overcurrent on a per-port basis. The Hub Overcurrent Change bit is also always 0 (no
change).

ClearPortFeature

Supported Features
PORT_ENABLE: Clears the Port Enable bit in the Host Port Control and Status Register.

PORT_SUSPEND: Sets the Port Resume bit in the Host Port Control and Status
Register. Schedules a time to clear the Port Resume bit so that the core will stop driving
the resume signal on the USB.

PORT_L1: Sets the Port Resume bit in the Host Port Control and Status Register. The
Port Resume will be clear by Core automatically.

PORT_POWER: Clears the Port Power bit in the Host Port Control and Status Register.

PORT_INDICATOR: No action required. The DWC_otg controller does not support a Port
Indicator.

C_PORT_CONNECTION: Clears the driver’s internal Connect Status Change flag.

C_PORT_RESET: Clears the driver’s internal Port Reset Change flag, which is set when
reset signaling on the host port is complete.

C_PORT_ENABLE: Clears the driver’s internal Port Enable/Disable Change flag.

C_PORT_SUSPEND: Clears the driver’s internal Port Suspend Change flag, which is set
when resume signaling on the host port is complete.

C_PORT_L1: Clears the driver’s internal PORT_L1 change flag.
C_PORT_OVER_CURRENT: Clears the driver’s internal port overcurrent change

April 2009

Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Table 5-1 Root Hub Class-Specific Requests (Continued)

Request Description

GetHubDescriptor Descriptor Fields
bDescLength: 9 bytes
bDescriptorType: 29H
bNbrPorts: 1

wHubCharacteristics:

e D1-D0: 00 (ganged power switching)

e D2: 0 (not part of a compound device)

e D4-Da3: 01 (individual port overcurrent protection)
¢ D6-D5: 00 (TT not applicable for root hub)

e D7: 0 (port indicators not supported)

bPwrOn2PwrGood: 1 (2 ms)

This value depends on system electrical characteristics. It should be set to an
appropriate value for a root hub port on your system. Possible values are 0-255, with
each unit representing 2 ms. The value is the time from the beginning of the power-on
sequence on the port until power is good on that port. The USB system software uses
this value to determine how long to wait before accessing a powered-on port.

bHubContrCurrent: 0 (for root hub)
DeviceRemovable: 0x00 (1 port, device is removable)

PortPwrCtriMask: Oxff (1 port)

GetHubStatus Status Fields
Local Power Source: Always 0 (local power supply good)
Overcurrent: Always 0 (overcurrent reported per-port)
Local Power Status Change: Always 0 (no change)

Overcurrent Change: Always 0 (no change)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

Table 5-1 Root Hub Class-Specific Requests (Continued)

Request

Description

GetPortStatus

Status Fields

Current Connect Status

Returns the value of the Port Connect Status bit in the Host Port Control and Status
register (HPRT).

Port Enabled/Disabled

Returns the value of the Port Enable bit in the Host Port Control and Status register
(HPRT).

Suspend
Returns the value of the Port Suspend bit in the Host Port Control and Status register
(HPRT).

L1
Returns the value of the PORT_L1 bit.

Overcurrent

Returns the value of the Port Overcurrent Active bit in the Host Port Control and Status
register (HPRT).

Reset

Returns the value of the Port Reset bit in the Host Port Control and Status register
(HPRT).

Port Power

Returns the value of the Port Power bit in the Host Port Control and Status register
(HPRT).

Low-Speed Device Attached

Returns 1 when the Port Speed field in the Host Port Control and Status register (HPRT)
is 2’010 (Low-Speed). Returns 0 otherwise.

High-Speed Device Attached

Returns 1 when the Port Speed field in the Host Port Control and Status register (HPRT)
is 2'000 (High-Speed). Returns 0 otherwise.

Port Test Mode

Returns 1 when the Port Test Control field in the Host Port Control and Status register
(HPRT) is non-zero. Returns 0 otherwise.

Port Indicator Control
Always returns 0.

Connect Status Change

Returns the value of the driver’s internal Connect Status Change flag. This flag is set
when the Port Connect Detected bit in the Host Port Control and Status register (HPRT)
is set or the Disconnect Detected Interrupt bit in the Global Interrupt Status register
(GINTSTS) is set.

April 2009

Synopsys, Inc.

[Host Controller Driver

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Table 5-1 Root Hub Class-Specific Requests (Continued)

Request

Description

GetPortStatus (continued)

Status Fields

Port Enable/Disable Change

Returns the value of the driver’s internal Port Enable/Disable Change flag. This flag is set
when the Port Enable/Disable Change bit in the Host Port Control and Status register
(HPRT) is set and the current Port Enable status is 0.

Suspend Change

Returns the value of the driver’s internal Port Suspend Change flag. This flag is set when
Resume signaling on the host port is completed.

L1 Change

Returns the value of the driver's internal Port L1 Change flag. This flag is set when the
host completes the L1 exit process.

Overcurrent Indicator Change

Returns the value of the driver’s internal Port Overcurrent Change flag.This flag is set
when the Port Overcurrent Changed bit in the Host Port Control and Status register
(HPRT) is set.

Reset Change

Returns the value of the driver’s internal Port Reset Change flag. This flag is set when
Reset signaling on the host port is completed.

SetHubFeature Supported Features
No features are supported for this request. This request is treated as a no-op for all
features.

SetPortFeature Supported Features

PORT_RESET

Sets the Port Reset bit in the Host Port Control and Status register (HPRT). Schedules a
time to clear the Port Reset bit so that the core stops driving the Reset signal on the
USB.

PORT_SUSPEND
Sets the Port Suspend bit in the Host Port Control and Status register (HPRT).

PORT_POWER
Sets the Port Power bit in the Host Port Control and Status register (HPRT).

PORT_TEST

Sets the specified value in the Port Test Control field in the Host Port Control and Status
register (HPRT).

PORT_INDICATOR
No action required. The DWC_otg controller does not support a port indicator.

SetandTestPortFeature

Supported Features

PORT_L1: Sends LPM transaction to the local device.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver

5.3 HCD Core API

The HCD OS wrapper communicates with the HCD core using the HCD core APIL. The HCD core API is
defined in the dwc_otg_pcd_if.h header file.

The following data structures are defined in the dwc_otg_hcd_if.h header file.

typedef int (*dwc otg hecd start cb t) (dwec _otg hed t *hcd);
typedef int (*dwc otg hcd disconnect cb t) (dwc otg hecd t *hcd);
typedef int (*dwc_otg hcd hub info from urb cb t)
(dwe_otg hecd t *hcd, void *urb handle,
uint32 t *hub addr, uint32 t *port addr) ;
typedef int (*dwc _otg hcd speed from urb cb t)
(dwe_otg hecd t *hcd, void *urb handle) ;
typedef int (*dwc_otg hcd complete urb cb t)
(dwe_otg hecd t *hcd, void *urb handle,
dwc_otg hcd urb t *dwc_otg urb,
uint32 t status);
typedef int (*dwc otg hcd get b hnp enable) (dwc _otg hcd t *hcd);

struct dwc otg hcd function ops

{

dwc_otg hcd start cb t start;

dwc_otg hecd disconnect cb t disconnect;
dwc_otg hed hub info from urb cb t hub info;

dwc _otg hcd speed from urb cb t speed;

dwc_otg hcd complete urb cb t complete;

dwc_otg hcd get b hnp enable get b hnp enable;

}i

5.3.1 HCD Core API functions
The HCD core provides the following functions, which can be used by the OS wrapper.

5.3.1.1 The dwc_otg_hcd_alloc_hcd Function
This function allocates dwc_otg_hcd_t structure and returns pointer on it.

extern dwc_otg hecd t *dwc_otg hcd alloc hcd(void)

5.3.1.2 The dwc_otg_hcd_init Function
This function should be called to initiate HCD core.
extern int dwc_otg hed init (dwec _otg hed t *hcd,
dwc_otg core if t *core if)

5.3.1.3 The dwc_otg_hcd_remove Function
This function frees the HCD.

extern void dwc_otg hcd remove (dwc _otg hcd t *hcd)

5.3.1.4 The dwc_otg_hcd_handle_intr Function
This function must be called on every hardware interrupt.

extern int32 t dwc_otg hcd handle intr(dwc_otg hcd t *dwc otg hcd)

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.3.1.5 The dwc_otg_hcd_get_priv_data Function
This function returns private data that had been set by dwc_otg_hcd_set_priv_data

extern void *dwc_otg hcd get priv data(dwc_otg hcd t *hcd)

5.3.1.6 The dwc_otg_hcd_set_priv_data Function
This function sets private data.
extern void dwc_otg hcd set priv data(dwc_otg hecd t *hcd,
void *priv data)

5.3.1.7 The dwc_otg_hcd_start Function
This function initializes the HCD core.
extern int dwc_otg hcd start (dwc otg hcd t *hcd,

struct dwc_otg hcd function ops *fops)

5.3.1.8 The dwc_otg_hcd_stop Function
This function halts the DWC_otg host mode operations cleanly. USB transfers are stopped.

extern void dwc_otg hcd stop(dwc _otg hcd t *hcd)

5.3.1.9 The dwc_otg_hcd_hub_control Function
This function handles hub class-specific requests.

extern int dwc_otg hcd hub control (dwe _otg hed t *dwc otg hcd,
ulé typeReq, ulé wValue, ul6 wIndex,
char *buf, ulé wLength)

5.3.1.10 The dwc_otg_hcd_otg_port Function
This function returns the OTG port number.

extern uint32 t dwc _otg hcd otg port (dwc otg hcd t *hcd)

5.3.1.11 The dwc_otg_hcd_is_b_host Function
If the core is currently acting as a B host, this function returns 1; 0 otherwise.

extern uint32 t dwc_otg hcd is b host (dwc _otg hcd t *hcd)

5.3.1.12 The dwc_otg_hcd_get_frame_number Function
This function returns the current frame number.

extern int dwc_otg hcd get frame number (dwc otg hcd t *hcd)

5.3.1.13 The dwc_otg_hcd_dump_state Function
This function dumps the hcd state.

extern void dwc_otg hcd dump state(dwc _otg hcd t *hcd)

5.3.1.14 The dwc_otg_hcd_dump_frrem Function

This function dumps the average frame remaining at SOF. This can be used to determine the average
interrupt latency. Frame remaining is also shown for start transfer and two additional sample points.

This function is not currently implemented.

extern void dwc_otg hcd dump frrem(dwc otg hcd t *hcd)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

5.3.1.15 The dwc_otg_hcd_send_Ilpm Function
This function sends LPM transaction to the local device.

extern int dwc_otg hcd send lpm(dwc_otg hecd t *hcd,
uint8 t devaddr, uint8 t hird, uint8 t bRemoteWake)
5.3.1.16 The dwc_otg_hcd_urb_alloc Function

This function allocates memory for dwc_otg_hcd_urb structure. Allocated memory must be freed by calling
the dwc_free function.

extern dwc_otg hcd urb t *dwc otg hcd urb alloc(dwc _otg hcd t *hcd,
int iso desc count, int atomic alloc)
5.3.1.17 The dwc_otg_hcd_urb_set_pipeinfo Function
This function sets pipe information in the URB.
extern void dwc_otg hcd urb set pipeinfo(dwc otg hecd urb t hed urb,
uint8 t devaddr, uint8 t ep num, uint8 t ep type,
uint8 t ep dir, uintlé_t mps)
5.3.1.18 The dwc_otg_hcd_urb_set_params Function
This function sets dwc_otg_hcd_urb parameters.

extern void dwc_otg hcd urb set params(dwc _otg hcd urb t *urb,
void *urb handle, void *buf, dwc _dma t dma,

uint32 t buflen, void *sp, dwc dma t sp dma,

uint8 t zero, uint8 t iso asap, uintlé t interval)

5.3.1.19 The dwc_otg_hcd_urb_get_status Function
This function gets status from dwc_otg_hcd_urb
extern uint32 t dwc_otg hcd urb get status(
dwc_otg hecd urb t *dwc_otg urb)

5.3.1.20 The dwc_otg_hcd_urb_get_actual_length Function
This function gets the actual length from dwc_otg_hcd_urb
extern uint32 t dwc otg hcd urb get actual length/(
dwc_otg hed urb t *dwc _otg urb)

5.3.1.21 The dwc_otg_hcd_urb_get_error_count Function
This function gets the error count from dwc_otg_hcd_urb (only for isochronous URBs).
extern uint32 t dwc_otg hcd urb get error count (

dwc_otg hecd urb t *dwc_otg urb)

5.3.1.22 The dwc_otg_hcd_urb_set_iso_desc_params Function
This function sets the isochronous descriptor offset and length.
extern void dwc_otg hcd urb set iso desc params (

dwc _otg hcd urb t *dwc_otg urb,
int desc_num, uint32 t offset, uint32 t length)

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.3.1.23 The dwc_otg_hcd_urb_get_iso_desc_status Function
This function gets the isochronous descriptor status specified by desc_num

extern uint32 t dwc_otg hcd urb get iso desc status(
dwc_otg hed urb t *dwc _otg urb, int desc num)

5.3.1.24 The dwc_otg_hcd_urb_enqueue Function
Queue URB. After transfer is completed, the complete callback will be called with the URB status.

int dwc_otg hcd urb enqueue (dwc_otg hcd t *dwc otg hecd,
dwc_otg hed urb t *dwc _otg urb, void **ep handle)

5.3.1.25 The dwc_otg_hcd_urb_dequeue Function
Dequeue the specified URB.

int dwc_otg hcd urb dequeue (dwc_otg hecd t *dwc otg hcd,
dwc_otg hecd urb t *dwc_otg urb)

5.4 Select and Queue Transactions

The HCD selects transactions to execute, and queues transactions to the DWC_otg controller.

5.4.1 Select Transactions

This function selects transactions from the HCD transfer schedule and assigns them to available host
channels. It is called from HCD interrupt handler functions. Because the transfer schedule is shared between
the HCD The urb_enqueue Function function and the interrupt handlers, care must be taken in handling
transfer lists in the HCD. The return value indicates the types of transactions selected (periodic, non-
periodic, both, or none).

dwc_otg transaction type e
dwc_otg hcd select transactions(dwc otg core if t *core if)

Selecting transactions to assign to available host channels depends on the following factors:

o

% The number and type of transfers currently scheduled in the HCD

o

% The number of host channels available

If there are any periodic transactions to be executed in the next (micro)frame, they are assigned to host
channels. (Periodic transactions are always assigned to host channels one (micro)frame before they are
scheduled to execute.) The HCD reserves a host channel for each periodic transfer to ensure that a channel is
always available when the transfer is scheduled to execute. In addition, the HCD ensures that the total
committed bandwidth for periodic transactions is less than the maximum bandwidth allowed in the USB
specification.

After assigning periodic transactions for the next (micro)frame, non-periodic transactions for the current
(micro)frame are assigned to host channels. At least one host channel is always available for non-periodic
transactions.

Multiple transactions may be assigned to a host channel for a single transfer request. For periodic transfers,
up to three transactions may be assigned for a high-speed, high-bandwidth endpoint. For bulk endpoints, it
is more efficient to assign multiple transactions at once rather than to wait for one transaction to finish
before starting the next. However, there is a trade-off between the number of endpoints that can be serviced
in a (micro)frame and the number of transactions that are assigned to a host channel simultaneously for
each endpoint.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

As transactions are assigned to a host channel, the channel is initialized as described in “The
dwc_otg_hc_init Function” on page 56.

Channel assignment logic in Descriptor DMA mode differs from Buffer DMA logic.

Bulk transfers are not assigned to the channel until all the transfer requests constituting a single

Scatter /Gather request are queued. Channel for Isochronous transfers remains assigned to the appropriate
endpoint until session completion. For all endpoint types other than Isochronous, the channel is released
when the DWC_otg controller completes transactions corresponding to the last descriptor within the list, or
if some error occurs (such as a STALL or Babble error). In Descriptor DMA mode, this function is called
from urb_enqueue function as well, unlike in Buffer DMA mode, when transaction selection is performed
on each (micro) frame interrupt.

5.4.2 Queue Transactions

The dwc_otg_hcd_queue_transactions function processes the currently active host channels and queues
transactions for these channels to the DWC_otg controller. It is called from HCD interrupt handler
functions. The tr_type argument specifies whether periodic, non-periodic, or both types of transactions are
queued.

void dwc_otg hcd queue transactions(dwc _otg core if t *core if,
dwc_otg transaction type e tr type)

The number and type of transactions queued depends on the following factors:
< The value of the tr_type argument
% Periodic and Non-Periodic TXFIFO space available
% Periodic and Non-Periodic Request Queue space available
% Slave or DMA mode

Note that host channels for periodic and non-periodic transactions are processed separately because they
have separate TxFIFOs and request queues.

For each of these transaction types, this function cycles through the associated host channels and determines
the action to take.

The action required for each host channel depends on the state of that channel. For example, if in Slave or

Buffer DMA the host channel has been initialized, but no transactions have started, this function starts the
transfer on the host channel as described in “The dwc_otg_hc_start_transfer Function” on page 57. When

the transfer associated with the host channel is in a PING state, this function issues a PING request.

In Slave mode, this function performs the following actions:

< If all the data packets for an OUT transfer have been queued and no retries are required, that transfer
is skipped during processing. For IN transfers, another request is always queued when there is space
available in the request queue. This ensures that another request is issued when the previous request
received a NAK response. Since NAK interrupts for IN requests may be missed under certain

conditions!, it’s important to issue IN requests until the transfer completes or a transfer error occurs.

< Processes active host channels of each transaction type in a round-robin order to provide fair access
to all active transfers. Processing resumes where it left off in the previous call and continues until
there is not enough space in the TxFIFO or the request queue for the current transaction type.

1. A NAK interrupt may be missed when multiple IN requests are issued back-to-back in the same (micro)frame. When both
requests receive a NAK response, the second NAK may occur before the first NAK interrupt has been handled. In this case, the
second NAK does not cause an interrupt.

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

< If more requests must be queued to complete the periodic or non-periodic transactions, it enables the
Periodic and/or Non-Periodic TXFIFO Empty interrupts.

In Buffer DMA mode, all active channels are started. The DWC_otg controller automatically issues requests
and transfers data between memory and the data FIFOs as Request Queue and FIFO space becomes
available.

In Descriptor DMA mode the dwc_otg_hcd_start_xfer_ddma function is called. This function performs the
following actions:

2

< Initializes descriptor list

2

% For periodic transfers, updates FrameList entries, corresponding to the assigned channel number,
based on endpoint b-interval value.

% Calls dwc_otg_hc_start_transfer_ddma function (described in “The
dwc_otg_hc_start_transfer_ddma Function” on page 57) to start the transfer.

5.5 Host Interrupt Service Routine

The HCD handles host interrupts. Many conditions can cause a host interrupt. When an interrupt occurs,
the host interrupt service routine determines the cause of the interrupt and invokes the appropriate function
to handle it. These interrupt handling functions are described in Sections 5.5.1-5.5.5.

All interrupt registers are processed from LSB to MSB. As each interrupt condition is handled, the
corresponding interrupt status bit is cleared.

5.5.1 SOF Interrupt

The dwc_otg_hcd_handle_sof_intr function services Start-of-Frame interrupts in Host mode. Non-periodic
transactions may be queued to the DWC_otg controller for the current (micro)frame. Periodic transactions
may be queued to the controller for the next (micro)frame.

int32 t dwc_otg hcd handle sof intr(dwc otg hcd t *dwc otg hcd)
This function performs the following steps:

< Activates any currently inactive periodic transfers that are scheduled to be executed in the next
(micro)frame.

2

< Calls dwc_otg_hcd_select_transactions to select transactions from the HCD transfer schedule and
assigns them to available host channels, as described in “Select Transactions” on page 90

0,
0‘0

Calls dwc_otg_hcd_queue_transactions to queue transactions to the DWC_otg controller as
described in “Queue Transactions” on page 91

l& Note In Descriptor DMA mode, the SOF Interrupt is masked because transaction selection and execution
logic does not rely on this interrupt.

5.5.2 RxFIFO Non-Empty (RxFLvI) Interrupt

The dwc_otg_hcd_handle_rx_status_q_level_intr function services RxFIFO Non-Empty interrupts, which
indicate that there is at least one packet in the RxFIFO. The packet(s) are moved from the FIFO to memory
when the DWC_otg controller is operating in Slave mode.

int32 t dwc_otg hcd handle rx status g level intr(
dwc_otg hecd t *dwc_otg hcd)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

This function performs the following steps:
1. Reads the Receive Status Pop Register (GRXSTSP) to get packet status information.

2. When the packet was successfully received and the controller is operating in Slave mode, calls The
dwc_otg_read_packet Function to copy the data to its destination buffer.

When the status read from GRXSTSP does not indicate data is available in the RxFIFO, the status must be
discarded. Popping the IN Transfer Completed, Channel Halted, or Data Toggle Error statuses causes an
interrupt, so the function returns without doing anything further.

5.5.3 Non-Periodic TXFIFO Empty Interrupt

The dwc_otg_hcd_handle_np_tx_fifo_empty_intr function services TxFIFO Empty interrupts, which occur
when the Non-Periodic TxFIFO is half-empty. More data packets may be written to the FIFO for OUT
transfers. More requests may be written to the non-periodic request queue for IN transfers. This interrupt is
enabled only in Slave mode.

int32 t dwc_otg hcd handle np tx fifo empty intr(
dwc_otg _hed t *dwc_otg hcd)

This function queues more non-periodic transactions by calling dwc_otg_hcd_queue_transactions. See
“Queue Transactions” on page 91

5.5.4 Periodic TXFIFO Empty Interrupt

The dwc_otg_hcd_handle_perio_tx_fifo_empty_intr function services Periodic TxFIFO Empty interrupts,
which occur when the Periodic TxFIFO is half-empty. More data packets may be written to the FIFO for
OUT transfers. More requests may be written to the Periodic Request Queue for IN transfers. This interrupt
is enabled only in Slave mode.
int32 t dwc_otg hcd handle perio tx fifo empty intr(

dwc_otg _hecd t *dwc_otg hcd)

This function queues more periodic transactions by calling dwc_otg_hcd_queue_transactions. See “Queue
Transactions” on page 91

5.5.5 Port Interrupt

The dwc_otg_hcd_handle_port_intr function services Port interrupts, which are caused by many
conditions. It determines which interrupt conditions have occurred and handles them appropriately.

int32 t dwc_otg hcd handle port intr(dwc otg hcd t *dwc_otg hecd)

This function reads the Host Port Control and Status register (HPRT) and performs the actions described in
Sections 5.5.5.1-5.5.5.3 for each interrupt status bit set in the register.

5.5.5.1 Port Connect Detected

This status indicates that a device has been connected to the root port. The driver sets its internal Connect
Status Change flag and clears the Port Connect Detected bit. The Hub Driver is notified when it reads the
root hub’s status via the Status Change endpoint. The Hub Driver issues a GetPortStatus command to the
root hub to determine that a Connect Status Change has occurred and to find the current Port Connect
status. The driver’s Connect Status Change flag is cleared when the Hub Driver issues a
ClearPortFeature(C_PORT_CONNECTION) command to the host port.

If a device has been connected, the Hub Driver initiates a port reset by issuing a
SetPortFeature(PORT_RESET) command to the host port. When this occurs, the driver sets the Port Reset bit

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

in the Host Port Control and Status register (HPRT). In addition, the driver schedules a time to clear the Port
Reset bit so that the core stops driving the reset signal on the USB. When the Port Reset bit is cleared, the
core enables the port and sets the Port Enable bit in the Host Port Control and Status register.

5.5.5.2 Port Enable/Disable Change

This status indicates that the host port has been enabled or disabled. The Hub Driver requires notification
only when the root port is disabled (see Section 11.24.2.7.2.2 in the Universal Serial Bus Specification, Revision
2.0). The core conditions that can automatically disable the host port are overcurrent and device disconnect.
Both conditions result in status change notifications to the Hub Driver.

If the root port is enabled when this interrupt is triggered, the interrupt handler performs the following
steps:

1. If the driver is configured to support Low Power mode and the attached device is a full-speed or
low-speed device, the interrupt handler sets USBCFG.PhyLPwrClkSel =1 to select a 48-MHz PHY
clock for power savings. For a low-speed device, the handler sets HCFG.FSLSPclkSel to either 48
MHz or 6 MHz, depending on the driver configuration parameters. For a full-speed device,
HCFG.FSLSPclkSel is always set to 48 MHz in Low Power mode.

2. If the driver is not configured to support Low Power mode, or the attached device is a high-speed
device, the interrupt handler sets USBCFG.PhyLPwrClkSel = 0 to select a 480-MHz PHY clock.

3. If any clock rates have been changed, the interrupt handler issues another USB bus reset. The
interrupt handler does not set the driver’s internal Port Reset Change flag.

4. If no clock rates have been changed, the interrupt handler sets the driver’s internal Port Reset
Change flag. This flag indicates that the reset is complete. The hub driver detects this when it issues
a GetPortStatus command to the host port.

5. The interrupt handler clears the Port Enable/Disable Change bit and returns.

If the root port is disabled when this interrupt is triggered, the driver sets its internal Port Enable/Disable
Change flag and clears the Port Enable/Disable Change bit. The Hub Driver is notified of this change when
it reads the root hub’s status via the Status Change endpoint. The Hub Driver issues a GetPortStatus
command to the root hub to determine that a Port Enable/Disable Change has occurred and to find the
current port enabled status. The driver’s internal Port Enable/Disable Change flag is cleared when the Hub
Driver issues a ClearPortFeature(C_PORT_ENABLE) command to the host port.

5.5.5.3 Port Overcurrent Change

The Port Overcurrent Change status indicates that the host port overcurrent status has changed. The driver
sets its internal Port Overcurrent Change flag and clears the Port Overcurrent Change bit in the HPRT
register (HPRT). The Hub Driver is notified of this change when it reads the root hub’s status via the Status
Change endpoint. The Hub Driver issues a GetPortStatus command to the root hub to determine that a port
overcurrent change has occurred and to find the overcurrent status. The driver’s internal Port Overcurrent
Change flag is cleared when the Hub Driver issues a ClearPortFeature(C_PORT_OVER_CURRENT)
command to the host port.

5.5.6 Host Channels Interrupt

The dwc_otg_hcd_handle_hc_intr function indicates that one or more host channels has a pending
interrupt. There are many conditions that can cause each host channel interrupt. This function determines
which conditions have occurred for each host channel interrupt and handles them appropriately.

int32 t dwc_otg hcd handle hc intr(dwc _otg hcd t *dwc_otg hecd)

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

This function reads the Host All Channels Interrupt register (HAINT) to determine which host channels
caused the interrupt. For each host channel interrupt bit set, this function reads the corresponding Host
Channel Interrupt register (HCINT#). This function performs the actions described in Sections 5.5.6.1-
5.5.6.11 for each bit set in the HCINT# register.

5.5.6.1 Transfer Complete

The Transfer Complete status indicates that all packets programmed to be transferred on the host channel
have successfully completed. The interrupt handler updates transfer information for the USB request
associated with the host channel. When the entire request is complete, the interrupt handler sets the status
of the request and informs the USB Driver that the request is complete. In Linux, this is done by calling the
complete callback function passed in with the request.

In Slave mode, the interrupt handler calls The dwc_otg_hc_halt Function to halt the host channel. This
makes the channel available for other transfers. For IN transfers, it flushes any remaining IN requests that
may have been scheduled before the transfer completed.

5.5.6.2 Channel Halted

In Slave mode, the Channel Halted status normally occurs when the driver explicitly requests a channel halt
by setting the Channel Disable bit in the Host Channel Characteristic register (HCCHAR#). This may
happen for many reasons, including a Transfer Complete interrupt, a STALL response, a NAK response, a
NYET response, or an error condition. In these cases, the Channel Halted interrupt indicates that the
DWC_otg controller has finished its cleanup.

To release the channel, the interrupt handler performs the following steps:
1. Ensures that any state associated with the host channel is cleaned up.

2. Calls dwc_otg_hcd_select_transactions to select more transactions to be executed as described in
“Select Transactions” on page 90

3. Makes the host channel available for other transfers by calling dwc_otg_hcd_queue_transactions to
queue more transactions to the DWC_otg controller as described in “Queue Transactions” on
page 91

In Buffer DMA mode, this status indicates that the core has finished processing transactions on a channel. In
this case, the other bits in the HCINT# register determine what actions need to be taken. When this interrupt
occurs, the HCINTn register is read and control is transferred to the appropriate interrupt handler. After

other handling is complete, the actions above are performed to release the channel for use by other transfers.

In Descriptor DMA mode, this status indicates that the core has finished processing transactions on a
descriptor with End-Of-List (EOL) bit set, or the core has detected an error condition when processing any
of the programmed descriptors.

5.5.6.3 AHB Error

The AHB Error status indicates that an AHB error occurred while transferring data to or from memory in
DMA mode. The interrupt handler aborts the USB request with an error status (-EIO). Debug information is
displayed to indicate the memory address at which the error occurred.

In Buffer DMA mode, the interrupt handler makes the host channel available for other transfers by calling
dwc_otg_hc_halt as described in “The dwc_otg_hc_halt Function” on page 56.

In Descriptor DMA mode, the core disables the channel on receiving an AHB error. The interrupt handler
does not call dwc_otg_hc_halt. The driver just releases the host channel for use by other transfers.

April 2009 Synopsys, Inc. H

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.5.6.4 STALL Response Received

The STALL Response Received status indicates that a STALL response was received for the last host
channel transaction. The interrupt handler aborts the USB request with an error status (-EPIPE). For bulk
and interrupt transfers, the data toggle for the associated endpoint is reset to 0 when this occurs.

In Slave mode, the interrupt handler halts the host channel by calling The dwc_otg_hc_halt Function.

In Buffer DMA mode, the interrupt handler releases the host channel for use by other transfers as described
in “Channel Halted” on page 95.

In Descriptor DMA mode, all successfully executed USB requests (associated descriptors) are completed
with success status. Any failed request is aborted with an error status (-EPIPE).

5.5.6.5 NAK Response Received

The NAK Response Received status indicates that a NAK response was received for the last host channel
transaction. The interrupt handler handles this according to the type of transaction that received the NAK
response. The type of transaction is determined by reading the HCCHAR# register. In Descriptor DMA
mode, the driver does not service the NAK response because the core takes care of handling it.

Sections 5.5.6.5.1-5.5.6.5.4 describe NAK processing under the various possible conditions.

5.5.6.5.1 NAK for Control or Bulk OUT Transactions

In Slave mode, a NAK may occur for a PING transaction in addition to a bulk or control transaction. The
interrupt handler performs the following steps:

1. Resets the error count.

2. For a high-speed device, sets the state in the host channel structure to indicate that a PING is
pending for this channel. This causes the PING protocol to be started when
dwc_otg_hcd_queue_transactions is called for this transfer.

3. Halts the channel by calling The dwc_otg_hc_halt Function. When the transfer is restarted, the
packet that prompted the NAK is retransmitted.

In Buffer DMA mode, the driver does not service a NAK response for Control and Bulk OUT transactions
because the core takes care of rewinding of buffer pointers and re-initializing the channel. The driver does
check for a NAK condition in the case of a transaction Error, to reset the error count.

5.5.6.5.2 NAK for Control or Bulk IN Transaction

This interrupt is enabled only when the error count is non-zero. In this case, the error count is reset.
Normally, there is no need to handle NAKs on control or bulk IN transactions. Requests are continually
queued until the transfer completes.

5.5.6.5.3 NAK for Interrupt IN or OUT Transaction

When an interrupt transaction receives a NAK reply, it is not retried until its next scheduled period. The
interrupt handler resets the error count and makes the host channel available for other transfers. In Slave
mode, halt the channel by calling The dwc_otg_hc_halt Function. In Buffer DMA mode, release the host
channel for use by other transfers as described in “Channel Halted” on page 95

5.5.6.5.4 NAK for SSPLIT/CSPLIT Transaction
The interrupt handler performs the following steps:

1. Sets the state in the host channel structure to indicate that the split transaction must be restarted.

2. When the NAK occurred on a complete split, resets the error count.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

3. InSlave mode, halts the channel by calling The dwc_otg_hc_halt Function. In DMA mode, the
handler releases the host channel for use by other transfers as described in “Channel Halted” on
page 95 The transfer will be restarted where it left off.

5.5.6.6 ACK Response Received

This status indicates that an ACK response was received for the last host channel transaction. In some cases,
this interrupt is masked or ignored. In other cases, the interrupt handler must perform some actions when
an ACK is received. These situations are described in Sections 5.5.6.6.1-5.5.6.6.3. Unless otherwise noted,
handling is the same in both Slave and Buffer DMA modes. In Descriptor DMA mode, the driver does not
service the ACK response because the core takes care of handling it.

5.5.6.6.1 ACK for PING Transaction in Slave Mode
The ACK interrupt is enabled when performing the PING protocol in Slave mode.

The interrupt handler performs the following steps:
Resets the error count.

2. Clears the PING state in the host channel structure. This causes a normal control or bulk transfer to
be started when dwc_otg_hcd_queue_transactions is called for this transfer.

3. Halts the channel by calling The dwc_otg_hc_halt Function. When the transfer is restarted, the
packet that received a NAK reply is retransmitted.

5.5.6.6.2 ACK After Transfer Error

The ACK interrupt is enabled after a transfer error occurs. In this case, reset the error count and disable the
ACK interrupt.

5.5.6.6.3 ACK for SSPLIT Transaction

The ACK interrupt is enabled when a SSPLIT transaction is issued. When the ACK occurs, the interrupt
handler schedules a CSPLIT transaction to be executed at a later time.

5.5.6.7 NYET Response Received

This status indicates that a NYET response was received for the last host channel transaction. This response
is only valid for high-speed control and bulk OUT transactions and for split transactions. In Descriptor
DMA mode, the driver does not service the NYET response because the core takes care of handling it.

Sections 5.5.6.7.1-5.5.6.7.2 describe NYET processing under the various possible conditions.

5.5.6.7.1 NYET for Control or Bulk OUT Transaction
In Slave mode, the interrupt handler performs the following steps:

1. Resets the error count.

2. Sets the state in the host channel structure to indicate that a PING is pending for this channel. This
causes the PING protocol to be started when dwc_otg_hcd_queue_transactions is called for this
transfer.

3. Halts the channel by calling The dwc_otg_hc_halt Function. The transfer is restarted where it left off.

In Buffer DMA mode, the driver does not service a NYET response, since the core takes care of rewinding of
buffer pointers and re-initializing the channel. The driver does check for a NYET condition in the case of a
transaction Error, to reset the error count.

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

5.5.6.7.2 NYET for CSPLIT Transaction

The interrupt handler reschedules the CSPLIT transaction to be executed at a later time. For periodic
transactions, retry the entire split transaction in a subsequent full-speed frame when there is not enough
time left in the current full-speed frame.

5.5.6.8 Transaction Error

This status indicates that a transaction error occurred on the last host channel transaction. This can be
caused by a CRC error, a PID check error, a bit stuffing error, or a timeout. In Descriptor DMA mode, the
driver does not handle the Transaction Error status.

5.5.6.8.1 Transaction Error for Control or Bulk Transaction
The interrupt handler performs the following steps:

1. Increments the error count.

2. For a high-speed device, sets the state in the host channel structure to indicate that a PING is
pending for this channel. This causes the PING protocol to be started when
dwc_otg_hcd_queue_transactions is called for this transfer.

3. InSlave mode, the interrupt handler halts the channel by calling The dwc_otg_hc_halt Function.

In Buffer DMA mode, the handler releases the host channel for use by other transfers as described in
“Channel Halted” on page 95. When three transaction errors occur for the same packet, the interrupt
handler aborts the USB request with an error status (-EPROTO) and the host channel is halted.
Otherwise, the transaction is retried.

5.5.6.8.2 Transaction Error for Interrupt Transaction
The interrupt handler performs the following steps:

Increments the error count.

2. For complete split transactions, sets the transfer state to retry the entire split transaction at a later
time.

3. InSlave mode, the interrupt handler halts the channel by calling The dwc_otg_hc_halt Function.

In Buffer DMA mode, the handler releases the host channel for use by other transfers as described in
“Channel Halted” on page 95. When three transaction errors have occurred for the same packet, the
interrupt handler aborts the USB request with an error status (-EPROTO) and the host channel is
halted. Otherwise, the transaction is retried.

5.5.6.9 Excessive Transaction Errors

This status indicates that three consecutive transaction errors occurred on the USB bus. This (XCS_XAC)
interrupt is valid only in Descriptor DMA mode. In this case, all successfully executed USB requests
(associated descriptors) are completed with success status, a failed request is aborted with an error status
(-PROTO). The XCS_XACT interrupt is not generated for Isochronous channels.

5.5.6.10 Babble Error

This status indicates that a packet babble or frame babble error was received for the last host channel
transaction. Packet babble occurs for IN transactions when the device transmits a data packet that is larger
than the max packet size. Frame babble occurs when an IN transaction is in progress at the EOF2 timing
point of a frame. Both are considered fatal errors.

The interrupt handler aborts the USB request with an error status ((EOVERFLOW).

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Host Controller Driver i

In Slave mode, it halts the channel by calling The dwc_otg_hc_halt Function.

In Buffer DMA mode, it releases the host channel for use by other transfers as described in “Channel
Halted” on page 95.

In Descriptor DMA mode, all successfully executed USB requests (associated descriptors) are completed
with success status, failed requests are aborted with an error status ((EOVERFLOW).

5.5.6.11 Frame Overrun

This status indicates that the controller did not start a periodic transaction because the transaction would
not have finished before the EOF1 time in the current (micro)frame. This could indicate a temporary
problem (such as the AHB being busy) or that the bandwidth allocated for periodic transactions is too high.

The interrupt handler retries the transfer at a later time. In Slave mode, it halts the channel by calling The
dwc_otg_hc_halt Function. In Buffer DMA mode, it releases the host channel for use by other transfers as
described in “Channel Halted” on page 95. In Descriptor DMA mode, the driver does not handle the Frame
Overrun status.

April 2009 Synopsys, Inc.

[Host Controller Driver Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

A

Performance Analysis

This appendix contains results of performance and CPU usage testing.

A1 Testing Environment

Tests were performed with 2.90a driver and 2.90a hardware on Linux kernel 2.6.20.1.

Device mode performance environment:

<+
<+

<+

Host: Linux based PC (2.81-GHz Pentium 4 CPU) with EHCI host controller.

Device: IPMate board with DWC_otg operating in device mode (max_transfer_size set to
128KB).

Gadget drivers: File Storage and RAM Storage gadgets (buflen set to 128KB).

Host mode performance environment:

<+
<+

Host: IPMate board with DWC_otg operating in host mode.

Device: IPMate board with DWC_otg operating in device mode. Gadget driver: RAM Storage
gadget.

IPMate board has the following parameters.

*
*

+

ARMO core clock: 202.8 MHz
System bus clock:

< AHB:101.4 MHz
< APB:50.7 MHz

DRAM clock: 101.4 MHz
OTG IP clock (and secondary AHB bus): 33 MHz
System memory size: 64 MB

April 2009

Synopsys, Inc.

[Performance Analysis Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

A.2 Test Results for HS OTG Linux Driver Software

Tables A-1 through A-3 summarize results when copying a 20 MB file to and from removable storage, using
the dbench utility. To measure the CPU load, we used the Linux OProfile utility.

Table A-1 Device Mode With RAM Storage Gadget

Slave Mode Buffer DMA Descriptor DMA
Speed (MB/s) CPU Load (%)? Speed (MB/s) CPU Load (%)® Speed (MB/s) CPU Load (%)?

Read 4.87 95 33.2 5 33.20 5
Write 4.82 93 26.2 6 26.20 7

a. CPU loading calculated using DWC_otg, dwc_common_port_lib and handle_IRQ_event threads.

Table A-2 Device Mode With File Storage Gadget

Slave Mode Buffer DMA Descriptor DMA
Speed (MB/s) CPU Load (%)? Speed (MB/s) CPU Load (%)® Speed (MB/s) CPU Load (%)?

Read 4.62 73 12.76 4 12.52 4.5
Write 3.57 72 11.34 3.5 11.48 3

a. CPU loading calculated using DWC_otg, dwc_common_port_lib and handle_IRQ_event threads.

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide Performance Analysis [

Table A-3 Host Mode as a Device OTG With RAM Storage Gadget

Slave Mode Buffer DMA Descriptor DMA

Speed (MB/s) CPU Load? (%) Speed (MB/s) CPU Load® (%) Speed (MB/s) CPU Load (%)

Read 3.69 70 13.25 38 16.81 4.8
Write P 6.59 79 15.30 42 18.72 6

a. CPU loading calculated using DWC_otg, dwc_common_port_lib and handle_IRQ_event threads.
b. Performance measured using dbench utility with ‘--direct’ option specified.

April 2009 Synopsys, Inc.

[Performance Analysis Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Synopsys, Inc. April 2009

Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

ROM Sizing

B.1 Overview

This appendix provides estimates of how much ROM the DWC_otg driver and other modules require.
Depending on your application, only certain modules are required. For example, a complete USB host stack
requires the DWC_otg driver, Linux USB core module, and a class driver (a printer driver class, for
example).

B.2 Estimated ROM Sizes

Table B-1 Estimated ROM Size for Host Applications

Modules (Host Stack) Total (KB) ROM (KB) Description

dwc_otg 126 @ 123 2@ DWC_otg driver (HCD and PCD)
dwc_common_port_lib 16 15 Portability library

usbcore 98 93 Linux USB core module
usb-storage 51 43 Needed for mass storage devices
sd_mod 11 10 Needed for mass storage devices
sg 21 20 Needed for mass storage devices
scsi_mod 20 79 Needed for mass storage devices
usblp 9 8 Needed for printers

a. The sizes for dwc_otg are listed with full functionality. See Tables B-3 and B-4 for details.

April 2009 Synopsys, Inc.

[ROM Sizing Hi-Speed USB On-The-Go Controller Subsystem Linux Driver Software User Guide

Table B-2 Estimated ROM Size for Device Applications

Modules (Device Stack) Total (KB) ROM (KB) Description

dwc_otg 126 @ 1232 DWC_otg driver (HCD and PCD)
dwc_common_port_lib 16 15 Portability library

g_file_storage 21 19 Linux example mass storage function driver

a. The sizes for dwc_otg are listed with full functionality. See Tables B-3 and B-4 for details.

Table B-3 Estimated ROM Size for DWC_otg With Debug Option Enabled (All Debug Messages Enabled)

Total ROM
Modules (Host Stack) (KB) (KB) Description
Full 165 162 -
Device Mode Isochronous 156 152 Device mode isochronous transfers disabled
Transfers Disabled
Device Only 116 113 Host mode disabled
Device Only with Isochronous 107 104 Host mode disabled, Device mode isochronous transfers disabled
Transfers Disabled
Host Only 120 118 Device mode disabled

Table B-4 Estimated ROM Size for DWC_otg With Debug Option Disabled (Some Debug Messages Disabled)

Total ROM
Modules (Host Stack) (KB) (KB) Description
Full 126 123 -
Device Mode Isochronous 116 114 Device mode Isochronous transfers disabled
Transfers Disabled
Device Only 93 91 Host mode disabled
Device Only with Isochronous 84 81 Host mode disabled, Device mode Isochronous transfers disabled
Transfers Disabled
Host Only 91 88 Device mode disabled

Synopsys, Inc. April 2009

	Release Notes
	Contents
	Revision History
	Preface
	Overview
	User Guide Organization
	Reference Documentation
	Customer Support

	1 Product Overview
	1.1 Product Overview
	1.2 Software Architecture
	1.2.1 DWC_OTG Driver Architecture

	1.3 Driver Software Components
	1.3.1 Environment Dependencies

	1.4 Deliverables
	1.4.1 Driver Software
	1.4.2 Linux Patch
	1.4.3 Software Documentation
	1.4.4 Demo Software
	1.4.5 Binaries
	1.4.6 Portability Library

	2 Environment-Specific Features
	2.1 Linux Architecture
	2.2 Linux Driver Module
	2.2.1 Data Structures
	2.2.1.1 The dwc_otg_driver Data Structure
	2.2.1.2 The dwc_otg_device Data Structure

	2.2.2 Initialization and Cleanup Functions
	2.2.2.1 The dwc_otg_driver_init Function
	2.2.2.2 The dwc_otg_driver_probe Function
	2.2.2.3 The dwc_otg_driver_remove Function
	2.2.2.4 The dwc_otg_driver_cleanup Function

	2.2.3 Module Parameters
	2.2.4 sysfs Attributes

	3 Core Interface Layer
	3.1 Core Interface Layer Overview
	3.2 Data Structures
	3.2.1 Control and Status Register Structures
	3.2.1.1 Core Global Registers Structure
	3.2.1.2 Device Mode Register Structures
	3.2.1.3 Host Mode Register Structures

	3.2.2 OTG Device Interface Structure
	3.2.3 OTG Host Interface Structure
	3.2.4 OTG Core Interface Structure
	3.2.5 Endpoint Structure
	3.2.6 Host Channel Structure
	3.2.7 DMA Descriptor Structure

	3.3 Core Interface Layer Initialization
	3.3.1 The dwc_otg_cil_init Function
	3.3.2 The dwc_otg_core_init Function
	3.3.2.1 Host and Device Initialization
	3.3.2.2 Device Initialization
	3.3.2.3 Host Initialization

	3.4 Device Operations
	3.4.1 Global Device Operations
	3.4.1.1 The dwc_otg_read_setup_packet Function
	3.4.1.2 The dwc_otg_get_frame_number Function
	3.4.1.3 The dwc_otg_wakeup Function
	3.4.1.4 The dwc_otg_dump_dev_registers Function

	3.4.2 Endpoint Operations
	3.4.2.1 The dwc_otg_ep0_activate Function
	3.4.2.2 The dwc_otg_ep0_start_transfer Function
	3.4.2.3 The dwc_otg_ep0_continue_transfer Function
	3.4.2.4 The dwc_otg_ep_activate Function
	3.4.2.5 The dwc_otg_ep_deactivate Function
	3.4.2.6 The dwc_otg_ep_start_transfer Function
	3.4.2.7 The dwc_otg_ep_start_zl_transfer Function
	3.4.2.8 dThe wc_otg_ep_write_packet Function
	3.4.2.9 The dwc_otg_ep_set_stall Function
	3.4.2.10 The dwc_otg_ep_clear_stall Function
	3.4.2.11 The dwc_otg_iso_ep_start_transfer Function
	3.4.2.12 The dwc_otg_iso_ep_start_buf_transfer Function
	3.4.2.13 The dwc_otg_iso_ep_start_ddma_transfer Function
	3.4.2.14 The dwc_otg_iso_ep_start_frm_transfer Function
	3.4.2.15 The dwc_otg_iso_ep_stop_transfer Function

	3.5 Host Operations
	3.5.1 Global Host Operations
	3.5.1.1 The dwc_otg_dump_host_registers Function

	3.5.2 Host Channel Operations
	3.5.2.1 The dwc_otg_hc_init Function
	3.5.2.2 The dwc_otg_hc_halt Function
	3.5.2.3 The dwc_otg_hc_start_transfer Function
	3.5.2.4 The dwc_otg_hc_continue_transfer Function
	3.5.2.5 The dwc_otg_hc_start_transfer_ddma Function
	3.5.2.6 The dwc_otg_hc_write_packet Function
	3.5.2.7 The dwc_otg_hc_cleanup Function

	3.6 Common Operations
	3.6.1 The dwc_otg_mode Function
	3.6.2 The dwc_otg_read_packet Function
	3.6.3 The dwc_otg_dump_global_registers Function
	3.6.4 The dwc_otg_enable_common_interrupts Function
	3.6.5 The dwc_otg_enable_device_interrupts Function
	3.6.6 The dwc_otg_enable_global_interrupts Function
	3.6.7 The dwc_otg_disable_global_interrupts Function
	3.6.8 The dwc_otg_disable_host_interrupts Function

	3.7 Register Access
	3.7.1 The dwc_otg_read_core_intr Function
	3.7.2 The dwc_otg_read_otg_intr Function
	3.7.3 The dwc_otg_read_dev_all_in_ep_intr Function
	3.7.4 The dwc_otg_read_dev_all_out_ep_intr Function
	3.7.5 The dwc_otg_read_dev_in_ep_intr Function
	3.7.6 The dwc_otg_read_dev_out_ep_intr Function
	3.7.7 The dwc_otg_read_host_all_channels_intr Function
	3.7.8 The dwc_otg_read_host_channel_intr Function

	3.8 Common Interrupt Service Routine
	3.8.1 Mode Mismatch Interrupt
	3.8.2 OTG Interrupt
	3.8.3 USB Suspend Interrupt
	3.8.4 Connector ID Status Change Interrupt
	3.8.5 New Session Detected Interrupt
	3.8.6 Disconnect Detected Interrupt
	3.8.7 Remote Wakeup Detected Interrupt
	3.8.8 LPM Transaction Received Interrupt

	4 Peripheral Controller Driver
	4.1 Peripheral Controller Driver Overview
	4.2 Function Driver Interface
	4.2.1 Linux Gadget API
	4.2.1.1 USB Endpoint Operations
	4.2.1.2 Gadget Operations

	4.3 PCD Core API
	4.3.1 The dwc_otg_pcd_init Function
	4.3.2 The dwc_otg_pcd_remove Function
	4.3.3 The dwc_otg_pcd_start Function
	4.3.4 The dwc_otg_pcd_ep_enable Function
	4.3.5 The dwc_otg_pcd_ep_disable Function
	4.3.6 The dwc_otg_pcd_ep_queue Function
	4.3.7 The dwc_otg_pcd_ep_dequeue Function
	4.3.8 The dwc_otg_pcd_ep_halt Function
	4.3.9 The dwc_otg_pcd_handle_intr Function
	4.3.10 The dwc_otg_pcd_get_frame_number Function
	4.3.11 The dwc_otg_pcd_iso_ep_start Function
	4.3.12 dwc_otg_pcd_iso_ep_stop
	4.3.13 The dwc_otg_pcd_get_iso_packet_params Function
	4.3.14 The dwc_otg_pcd_get_iso_packet_count Function
	4.3.15 The dwc_otg_pcd_wakeup Function
	4.3.16 The dwc_otg_pcd_is_lpm_enabled Function
	4.3.17 The dwc_otg_pcd_get_rmwkup_enable Function
	4.3.18 The dwc_otg_pcd_initiate_srp Function
	4.3.19 The dwc_otg_pcd_remote_wakeup Function
	4.3.20 The dwc_otg_pcd_is_dualspeed Function
	4.3.21 The dwc_otg_pcd_is_otg Function
	4.3.22 hnp_param functions

	4.4 Standard USB Command Processing
	4.5 Device Interrupt Service Routine
	4.5.1 Start of Frame Interrupt (SOF)
	4.5.2 RxFIFO Non-Empty (RxFLvl) Interrupt
	4.5.3 Non-Periodic TxFIFO Empty Interrupt
	4.5.4 Early Suspend Interrupt
	4.5.5 USB Reset Interrupt
	4.5.6 Enumeration Done Interrupt
	4.5.7 Isochronous OUT Packet Dropped Interrupt
	4.5.8 End of Periodic Frame Interrupt
	4.5.9 IN Token Received Interrupt
	4.5.10 Endpoint Mismatch Interrupt
	4.5.11 IN Endpoint Interrupt
	4.5.12 OUT Endpoint Interrupt
	4.5.13 Incomplete Isochronous IN Transfer Interrupt
	4.5.14 Incomplete Isochronous OUT Transfer Interrupt

	5 Host Controller Driver
	5.1 Host Controller Driver Overview
	5.2 USB Driver Interface
	5.2.1 Linux hc_driver API
	5.2.1.1 The start Function
	5.2.1.2 The stop Function
	5.2.1.3 The get_frame_number Function
	5.2.1.4 The hcd_alloc Function
	5.2.1.5 The hcd_free Function
	5.2.1.6 The urb_enqueue Function
	5.2.1.7 The urb_dequeue Function
	5.2.1.8 The endpoint_disable Function
	5.2.1.9 The irq Function
	5.2.1.10 The hub_status_data Function
	5.2.1.11 The hub_control Function

	5.3 HCD Core API
	5.3.1 HCD Core API functions
	5.3.1.1 The dwc_otg_hcd_alloc_hcd Function
	5.3.1.2 The dwc_otg_hcd_init Function
	5.3.1.3 The dwc_otg_hcd_remove Function
	5.3.1.4 The dwc_otg_hcd_handle_intr Function
	5.3.1.5 The dwc_otg_hcd_get_priv_data Function
	5.3.1.6 The dwc_otg_hcd_set_priv_data Function
	5.3.1.7 The dwc_otg_hcd_start Function
	5.3.1.8 The dwc_otg_hcd_stop Function
	5.3.1.9 The dwc_otg_hcd_hub_control Function
	5.3.1.10 The dwc_otg_hcd_otg_port Function
	5.3.1.11 The dwc_otg_hcd_is_b_host Function
	5.3.1.12 The dwc_otg_hcd_get_frame_number Function
	5.3.1.13 The dwc_otg_hcd_dump_state Function
	5.3.1.14 The dwc_otg_hcd_dump_frrem Function
	5.3.1.15 The dwc_otg_hcd_send_lpm Function
	5.3.1.16 The dwc_otg_hcd_urb_alloc Function
	5.3.1.17 The dwc_otg_hcd_urb_set_pipeinfo Function
	5.3.1.18 The dwc_otg_hcd_urb_set_params Function
	5.3.1.19 The dwc_otg_hcd_urb_get_status Function
	5.3.1.20 The dwc_otg_hcd_urb_get_actual_length Function
	5.3.1.21 The dwc_otg_hcd_urb_get_error_count Function
	5.3.1.22 The dwc_otg_hcd_urb_set_iso_desc_params Function
	5.3.1.23 The dwc_otg_hcd_urb_get_iso_desc_status Function
	5.3.1.24 The dwc_otg_hcd_urb_enqueue Function
	5.3.1.25 The dwc_otg_hcd_urb_dequeue Function

	5.4 Select and Queue Transactions
	5.4.1 Select Transactions
	5.4.2 Queue Transactions

	5.5 Host Interrupt Service Routine
	5.5.1 SOF Interrupt
	5.5.2 RxFIFO Non-Empty (RxFLvl) Interrupt
	5.5.3 Non-Periodic TxFIFO Empty Interrupt
	5.5.4 Periodic TxFIFO Empty Interrupt
	5.5.5 Port Interrupt
	5.5.5.1 Port Connect Detected
	5.5.5.2 Port Enable/Disable Change
	5.5.5.3 Port Overcurrent Change

	5.5.6 Host Channels Interrupt
	5.5.6.1 Transfer Complete
	5.5.6.2 Channel Halted
	5.5.6.3 AHB Error
	5.5.6.4 STALL Response Received
	5.5.6.5 NAK Response Received
	5.5.6.6 ACK Response Received
	5.5.6.7 NYET Response Received
	5.5.6.8 Transaction Error
	5.5.6.9 Excessive Transaction Errors
	5.5.6.10 Babble Error
	5.5.6.11 Frame Overrun

	A Performance Analysis
	A.1 Testing Environment
	A.2 Test Results for HS OTG Linux Driver Software

	B ROM Sizing
	B.1 Overview
	B.2 Estimated ROM Sizes

